Чертежи-Графическая часть-Курсовая работа-Технологическая схема промысловой обработки газа с помощью НТС, Патентно-информационный обзор Регуляторы давления, Устройство сброса и контроля давления

Цена:
696 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon
material.view.file_icon Лист 4 Игла.cdw
material.view.file_icon Лист 4 кольцо.cdw
material.view.file_icon Лист 4 Корпус.cdw
material.view.file_icon Лист 4 Пробка.cdw
material.view.file_icon Лист 1 Схема.cdw
material.view.file_icon Лист 2 Обзор.cdw
material.view.file_icon Лист 3 Сбор.cdw
material.view.file_icon Спецификация к 3 л.spw
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Компас или КОМПАС-3D Viewer

Описание

Глубина скважины – 1500 м;
Производительность скважины – 540 м3/сут;
Содержание конденсата в газе – 3%;
Устьевое давление – 15 МПа (150 кгс/см2);
Труба НКТ 73 ГОСТ 633-80;
Арматура фонтанная АФК 4-65х15 (Схема No4)
Тип запорного устройства ЗМС-65х15;
Управление арматурой – ручное;
Условный проход ствола – 100 мм;
Боковых отводов – 65 мм;
Принципиальная технологическая схема низкотемпературной сепарации приведена на рисунке 3.1 Сырой газ из скважины поступает на установку комплексной подготовки (УКПГ), где после предварительного дросселирования (или без него) направляется в сепаратор первой ступени 3 для отделения от капельной жидкости. Затем газ направляется в теплообменник 5 для охлаждения газом, поступающим в межтрубное пространство из низкотемпературного сепаратора 7. Оттуда газ через эжектор 6 пли штуцер поступает в низкотемпературный сепаратор 7. в котором в результате понижения температуры в теплообменнике и на штуцере (эжекторе) из него выделяется жидкость. Осушенный газ поступает в теплообменник Б, охлаждает продукцию скважины и направляется в промысловый газосборный коллектор.
Нестабильный конденсат и водный раствор ингибитора (например, диэтиленгликоля - ДЭГ, предотвращающий гидротообразование, из сепаратора первой ступени 3 поступают в конденсатосборник 4 и далее в емкость 10. Здесь происходит разделение конденсата и водного раствора ДЭГ. Затем конденсат под своим давлением через теплообменник 9 подается в поток газа перед низкотемпературным сепаратором, а водный раствор ДЭГ направляется через емкость 11 и фильтр 12 для очистки от механических примесей в регенерационную установку 13, после чего регенерированный гликоль из установки с помощью насоса 19 подается в шлейфы для предотвращения образования гидратов в них.
Поток нестабильного углеводородного конденсата и водного раствора ДЭГ направляется в разделительную емкость 15 через межтрубное пространство теплообменников, где охлаждает нестабильный конденсат, поступающий из емкости 10 для впрыскивания в газовый поток. Водный раствор гликоля через фильтр поступает в установку регенерации 14 после чего насосом 19 подается в газовый поток перед теплообменником 5. Конденсат из разделительной емкости 15 направляется через межтрубное пространство теплообменника 18 в деэтанизатор 16. Установка деэтанизации состоит из тарельчатой колонны, печи и теплообменника. Заданная температура в нижней части деэтанизатора поддерживается с помощью теплообменника 18. в котором стабильный конденсат (нижний продукт деэтанизатора), подогретый в печи 17 до температуры 160 oС, отдает тепло насыщенному конденсату, поступающему из емкости 15. Охлажденный стабильный конденсат подается в конденсатопровод. По схеме предусматривается также ввод части холодного нестабильного конденсата на верхнюю тарелку стабилизатора. В этом случае деэтанизатор работает в режиме абсорбционно-отпарной колонны.
Если предусматривается транспортирование конденсата газ выветривания (дегазации) из емкости 15 и газ деэтанизатора 16 через штуцер поступают в общий поток. Если давление недостаточно, то предусматривают установку компрессора 8. Газ дегазации из емкости 10 также возвращается в общий поток под своим давлением. Контроль за дебетами газа и жидкости осуществляется с помощью сепаратора 1, на выкидной линии которого установлены замерная диафрагма и конденсатосборник-разделитель 2 со счетчиками.
Если на устье скважины температура газа достаточно высока и на его пути до газосборного пункта гидраты не образуются, то схема подготовки газа упрощается.
На период добычи, когда требуются дополнительные источники холода на установке НТС для обеспечения требуемой точки росы газа, в схеме вместо штуцера устанавливают турбодетандер, использование которого дает эффект по снижению температуры в 3 - 4 раза больше, чем при обычном дросселировании. В этом случае в схеме предусматривается сепаратор второй ступени, предназначенный для отделения жидкости от газа, поступающего в турбодетандер. Осушенный газ из межтрубного пространства теплообменника 5 поступает на прием компрессора, установленной на одном валу с турбодетандером, и далее в промысловый коллектор.
Возможны модификации описанной схемы в соответствии с конкретными условиями. В частности, дополнительно к теплообменнику 5 устанавливают воздушный или водяной холодильник.
По мере снижения пластового давления для поддержания постоянной температуры сепарации газа на установках НТС требуется последовательное увеличение поверхности теплообменников, что приводит к необходимости перестройки установки. Однако наступает такой период, когда это становится нерациональным В таком случае вводят холод извне либо применяют другие способы подготовки газа.
Эффективность работы установок НТС любого типа определяется правильностью выбранного технологического режима эксплуатации скважины.
Технологическая схема промысловой обработки газа с помощью НТС-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Технологическая схема промысловой обработки газа с помощью НТС-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
297 руб.
Технологическая схема промысловой обработки газа с помощью НТС-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Устройство сброса и контроля давления-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Устройство сброса и контроля давления-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
297 руб.
Устройство сброса и контроля давления-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Чертежи-Графическая часть-Курсовая работа-Блок запасных ёмкостей, Патентно-информационный поиск
Приемные емкости служат для приема бурового раствора из цир-куляционной системы и подачи его во всасывающие линии буровых насосов. Запасные емкости применяют для хранения запасного раствора, а также воды и химических реагентов. В большинстве случаев используют прямоугольные приемные емкости вместимостью 24 и 14 м3. Для каждого насоса обычно устанавливаются по две (14 м3) или по одной (24 м3) емкости. Монтируют приемные емкости как можно ближе к насосу с учетом установки на приемных линиях между
500 руб.
Чертежи-Графическая часть-Курсовая работа-Блок запасных ёмкостей, Патентно-информационный поиск
Чертежи-Графическая часть-Курсовая работа-Вспомогательная гидравлическая лебедка, Патентно- информационный обзор
Агрегат АРБ 100 предназначен для разбуривання цементных пробок в трубах диаметром 5-6 и связанных с этим процессом операций (спуск и подъём бурильных труб, промывка скважин и т. д., спуска и подъема насосно-компрессорных труб, установки фонтанной арматуры, ремонта и ликвидации аварий, проведения буровых работ. Все механизмы агрегата, за исключением промывочного насоса, монтируются на шасси автомобиля КрАЗ-(250). В качестве привода используется ходовой двигатель автомашины. Промывочный насос смон
596 руб.
Чертежи-Графическая часть-Курсовая работа-Вспомогательная гидравлическая лебедка, Патентно- информационный обзор
Чертежи-Графическая часть-Курсовая работа-Буровое лопастное долото, Патентно-информационный обзор
При бурении нефтяных и газовых скважин чаще всего применяют трехлопастные (3Л и 3ИР) и шестилопастные (6ИР) долота. Лопастное долото 3Л состоит из корпуса, верхняя часть которого имеет ниппель с замковой резьбой для присоединения к бурильной колонне, и трех приваренных к корпусу долота лопастей, расположенных по отношению друг к другу под углом 120 градусов. Для подвода бурового раствора к забою долото снабжено промывочными отверстиями, расположенными между лопастями. Лопасти выполнены заостренн
596 руб.
Чертежи-Графическая часть-Курсовая работа-Буровое лопастное долото, Патентно-информационный обзор
Чертежи-Графическая часть-Курсовая работа-Сборочный чертеж ППГ 230х35, ППГ 230х35, Патентный обзор
Для герметизации устья скважины используют плашечные, универсальные и вращающиеся превенторы. Плашечный превентор (рис.2.1) предназначен для герметизации устья скважины при наличии и отсутствии труб в скважине. 2.1 Плашечные превенторы. ПП выпускают 15 типоразмеров с диапазоном отверстий от 120 до 520 мм со сменными плашками под уплотняемые трубы с диапазоном диаметров от 33 мм до 425 мм и глухими плашками для полного закрытия скважины при отсутствии труб. В состав ПП входят, литой ко
596 руб.
Чертежи-Графическая часть-Курсовая работа-Сборочный чертеж ППГ 230х35, ППГ 230х35, Патентный обзор
Чертежи-Графическая часть-Курсовая работа-Схема прокладки трубопровода через болото, ПАТЕНТНО - ИНФОРМАЦИОННЫЙ ОБЗОР
Расчитать трубопрвод против всплытия : Определить рабчее давление. Расчитать толщину стенки. Расчёт усттойчивости трубопровода против всплыти. Исходные данные : 1. Длина трубопровода 3000 м. 2. Наружный диаметр трубы 720 мм. 3. Объём перкачиваемой продукции 5 млн. тонн/год. 4. Плотность нефти 870 кг/м3.
297 руб.
Чертежи-Графическая часть-Курсовая работа-Схема прокладки трубопровода через болото, ПАТЕНТНО - ИНФОРМАЦИОННЫЙ ОБЗОР
Чертежи-Графическая часть-Курсовая работа-Кронблок-УКБ-6-250, Патентно-информационный обзор
Кронблок является неподвижной частью талевой системы и представляет собой раму, сваренную из профильного проката, на которой смонтированы на опорах оси со шкивами. Кронблоки устанавливают в верхней части буровых вышек. Конструкции кронблоков зависят от типа используемых вышек и различаются по числу шкивов, грузоподъемности и конструктивной схеме.Большинство конструкций кронблоков выполняется по схеме, приведенной на рисунке 2. Рисунок 2 - схема шестишкивного кронблока: 1 - рама; 2 - подшипник;
596 руб.
Чертежи-Графическая часть-Курсовая работа-Кронблок-УКБ-6-250, Патентно-информационный обзор
Теплотехника СФУ 2017 Задача 1 Вариант 57
Смесь, состоящая из М1 киломолей углекислого газа и М2 киломолей окиси углерода с начальными параметрами р1 = 5 МПа и Т1 = 2000 К, расширяется до конечного объема V2 = εV1. Расширение осуществляется по изотерме, по адиабате, по политропе с показателем n. Определить газовую постоянную смеси, её массу и начальный объем, конечные параметры смеси, работу расширения, теплоту процесса, изменение внутренней энергии, энтальпии и энтропии. Дать сводную таблицу результатов и анализ ее. Показать процессы в
User Z24 : 30 декабря 2026
280 руб.
Теплотехника СФУ 2017 Задача 1 Вариант 57
Учебная практика по дисциплине «Сети и системы связи». вариант №18
Темы мини рефератов: Секция 1: 1.1 Преобразование аналоговых сигналов в цифровые и обратно: АЦП и ЦАП Секция 2: 2.3.5. Системы передачи синхронной иерархии SDH Секция 2: 2.4.2. Интерфейс G.703 Секция 3: 3.3.2. Система сигнализации №7 (SS7). Транзит SS7 по IP-сетям Содержание 1. Преобразование аналоговых сигналов в цифровые и обратно: АЦП и ЦАП…………………………………………………………………………….….3 1.1 Формирование цифрового канального сигнала………………………....4 1.2 Операция дискретизации, выбор частоты дискретизации…
User Sibur54 : 16 марта 2019
350 руб.
Термодинамика и теплопередача ТюмГНГУ Теория теплообмена Задача 3 Вариант 00
Стальной трубопровод диаметром d1/d2=100 мм/110 мм с коэффициентом теплопроводности λ1 покрыт изоляцией в 2 слоя одинаковой толщины δ2=δ3=50 мм, причем первый слой имеет коэффициент теплопроводности λ2, второй λ3. Определить потери теплоты через изоляцию с 1 м трубы, если температура внутренней поверхности t1, а наружной поверхности изоляции t4. Определить температуру на границе соприкосновения слоев t3. Как изменится величина тепловых потерь с 1 м трубопровода, если слой изоляции поменять ме
User Z24 : 12 января 2026
200 руб.
Термодинамика и теплопередача ТюмГНГУ Теория теплообмена Задача 3 Вариант 00
Человеко машинное взаимодействие. вариант №8
КУРСОВАЯ РАБОТА Провести первые 4 этапа проблемно-центрированного дизайна (до чернового описания включительно) программного продукта, помогающего пользователю в решении описанной ниже задачи (10 вариантов). Постарайтесь найти одного–двух человек, которые могут быть заинтересованы в решении предложенной проблемы. Дайте их краткое описание (возраст, образование, профессия, навыки и т.п.), ваше понимание задач и подзадач, решение которых будет поддерживать разрабатываемая программа. Ответьте на
User sunman : 25 апреля 2020
300 руб.
up Наверх