Эконометрика. Контрольная работа. Вариант № 11.
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по -критерию;
1.3. Оцените совместную значимость всех факторов по -критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1.-2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X_1,X_3;
Постройте вспомогательную регрессию, не включающую в себя переменные X_1 и X_3. Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F - статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея.
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted, дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X_1- X_3 , но и квадрат, и куб расчетных значений исходного уравнения. Постройте F - статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) - переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений - значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X_1,X_2,X_3 участвует набор факторов X_1* Chow _ Break , X_2* Chow _ Break , X_3* Chow _ Break , X_1*(1- Chow _ Break ), X_2*(1- Chow _ Break ), X_3*(1- Chow _ Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F - статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:= Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 - квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2, а факторы - исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по -критерию;
1.3. Оцените совместную значимость всех факторов по -критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1.-2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X_1,X_3;
Постройте вспомогательную регрессию, не включающую в себя переменные X_1 и X_3. Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F - статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея.
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted, дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X_1- X_3 , но и квадрат, и куб расчетных значений исходного уравнения. Постройте F - статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) - переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений - значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X_1,X_2,X_3 участвует набор факторов X_1* Chow _ Break , X_2* Chow _ Break , X_3* Chow _ Break , X_1*(1- Chow _ Break ), X_2*(1- Chow _ Break ), X_3*(1- Chow _ Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F - статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:= Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 - квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2, а факторы - исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Вид работы: Контрольная работа 1
Оценка:Зачет
Похожие материалы
Контрольная работа по дисциплине: «Эконометрика». Вариант №11
Albinashiet
: 6 декабря 2015
Описание данных и задание
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регре
500 руб.
Контрольная работа. Эконометрика
vladslad
: 27 июня 2016
Задание 2
1. Выполнить анализ динамики показателя, указанного в варианте задания, за 5 последних лет (в абсолютном и относительном выражении):
а) от года к году;
б) в среднем за рассматриваемый период.
Показатель – численность иностранных граждан по федеральным округам (ФО).
150 руб.
Контрольная работа №1. Эконометрика.
studypro2
: 28 июня 2017
КОНТРОЛЬНАЯ РАБОТА 1
По территориям региона за некоторый год приводятся данные о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны (региона) в рублях, обозначаемые х, и среднедневная заработная плата в рублях — у. Соответственно: х — 78, 82, 87, 79, 89, 106, 67, 88, 73, 87, 76, 115; у — 133, 148, 134, 154, 162, 195, 139, 158, 152, 162, 159, 173.
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и средн
200 руб.
Эконометрика. (Контрольная работа В-5)
banderas0876
: 2 мая 2016
Содержание
Описание данных и задание 3
Ход работы 15
Задание 1. 15
1.1 Оценим параметры линейной регрессии МНК. 15
1.2 Оцените значимость каждого фактора в отдельности по t-критерию; 15
1.3 Оценим совместную значимость всех факторов по F-критерию 15
1.4 Проверим гетероскедастичность остатков 15
1.5 Проверим нормальность остатков; 15
Задание 2. 16
2.1. Проверить совместную значимость факторов X1, X3. 16
2.2. RESET тест Рамсея 16
2.3 Тест Бреуша – Годфри 18
2.3 Тест Чоу (I форма) 29
2.4. Проверка
150 руб.
Контрольная работа по дисциплине "Эконометрика"
ДО Сибгути
: 26 декабря 2015
Задание.
Изучается зависимость цены на некоторый товар длительного пользования в магазинах немаленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными);
•
150 руб.
Эконометрика. Контрольная работа. Вариант 16
ilsy
: 31 октября 2017
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
700 руб.
Эконометрика, контрольная работа, вариант 2
Ната4ка
: 11 февраля 2017
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели.
В среде MATRIXER была построена следующая модель линейной регрессии:
Обычный метод наименьших квадратов
(линейная регрессия)
Зависимая переменная: Y
Количество наблюдений: 480
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями.
200 руб.
Эконометрика. Вариант №2. Контрольная работа.
studypro
: 17 июля 2016
Задача 3
В результате анализа уровня потребления продукции по различным регионам страны выявлен ряд факторов, оказывающих на него существенное влияние:
- уровень урбанизации;
- относительный образовательный уровень населения;
- относительный возрастной показатель;
- относительная заработная плата;
- географическое положение региона.
В данной задаче Y (уровень потребления продукции) – показатель, рассчитанный, исходя из минимального набора продуктов потребительской корзины. Кроме того, в этот по
250 руб.
Другие работы
СибГути контрольная работа по курсу “Информатика” 1 семестр 3 вариант
hunter911
: 19 октября 2009
Задание на контрольную работу.
Системы счисления
1. Умножить в двоичной арифметике числа a и b.
2. Перевести число a из десятичной в систему счисления по основанию 4.
3. Перевести число a из двоичной в десятичную систему счисления.
4. Перевести число а из восьмеричной в шестнадцатиричную систему счисления.
100 руб.
Военные компьютерные игры в боевой подготовке вооруженных сил армий иностранных государств на современном этапе
Lokard
: 8 марта 2014
Введение
Предпосылки возникновения и обоснование использования военных компьютерных игр в боевой подготовке Вооруженных Сил на современном этапе
Военные компьютерные игры в боевой подготовке Вооруженных Сил Российской Федерации и Республики Беларусь на современном этапе
Заключение
Список использованных источников
Введение
Во второй части обзора рассмотрим применение военных компьютерных игр в ВС РФ и РБ, а также проведем сопоставление процессов боевой подготовки с применением военных компью
5 руб.
Вопросы и шпоры по стратегическому и производственному менеджменту
evelin
: 29 июля 2015
ВОПРОСЫ
Экономическая теория, государственное и муниципальное управление
1. Основные макроэкономические показатели, методы расчета ВНП.
2. Возможные типы экономических систем (традиционная система, командная экономика, рыночная экономика, смешанная экономика).
3. Рынок: понятие, виды, функции. Рыночная инфраструктура в современной России.
4. Рыночное равновесие: спрос и предложение, ценовые и не ценовые факторы.
5. Эластичность спроса и предложения.
6. Доходы населения: виды, структура, по
30 руб.
Лабораторные работы по механике грунтов
a-cool-a
: 3 мая 2012
1 Лабораторная работа - Цель работы: установить зависимость предельного сопротивления τпред от величины, сжимающих эффективных давлений Рэф.. Определить основные прочностные характеристики: φ – угол внутреннего трения, с – удельное сцепление.
2 Лабораторная работа - Цель работы: определить деформирующие характеристики грунта, коэффициент относительной сжимаемости m0, модуль линейной деформации Е0.
3 Лабораторная работа - Цель работы: установить зависимость предельного сопротивления τпред от вел