Эконометрика. Контрольная работа. Вариант № 11.
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по -критерию;
1.3. Оцените совместную значимость всех факторов по -критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1.-2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X_1,X_3;
Постройте вспомогательную регрессию, не включающую в себя переменные X_1 и X_3. Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F - статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея.
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted, дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X_1- X_3 , но и квадрат, и куб расчетных значений исходного уравнения. Постройте F - статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) - переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений - значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X_1,X_2,X_3 участвует набор факторов X_1* Chow _ Break , X_2* Chow _ Break , X_3* Chow _ Break , X_1*(1- Chow _ Break ), X_2*(1- Chow _ Break ), X_3*(1- Chow _ Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F - статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:= Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 - квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2, а факторы - исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по -критерию;
1.3. Оцените совместную значимость всех факторов по -критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1.-2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X_1,X_3;
Постройте вспомогательную регрессию, не включающую в себя переменные X_1 и X_3. Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F - статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея.
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted, дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X_1- X_3 , но и квадрат, и куб расчетных значений исходного уравнения. Постройте F - статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) - переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений - значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X_1,X_2,X_3 участвует набор факторов X_1* Chow _ Break , X_2* Chow _ Break , X_3* Chow _ Break , X_1*(1- Chow _ Break ), X_2*(1- Chow _ Break ), X_3*(1- Chow _ Break). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F - статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid1) и рассчитайте квадрат остатков (введите в командное окно команду Resid2:= Resid1^2 и нажмите «Выполнить», теперь в переменной Resid2 - квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2, а факторы - исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ), квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Вид работы: Контрольная работа 1
Оценка:Зачет
Похожие материалы
Контрольная работа по дисциплине: «Эконометрика». Вариант №11
Albinashiet
: 6 декабря 2015
Описание данных и задание
Рассматривается модель линейной регрессии:
Y - зависимая переменная;
X_j - факторы регрессии;
i - номер наблюдения; действуют стандартные предположения линейной регрессии.
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, -критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER, приведите их результаты и прокомментируйте согласно пунктам 1.1. - 1.5. задания.
1.1. Оцените параметры линейной регре
500 руб.
Контрольная работа. Эконометрика
vladslad
: 27 июня 2016
Задание 2
1. Выполнить анализ динамики показателя, указанного в варианте задания, за 5 последних лет (в абсолютном и относительном выражении):
а) от года к году;
б) в среднем за рассматриваемый период.
Показатель – численность иностранных граждан по федеральным округам (ФО).
150 руб.
Контрольная работа №1. Эконометрика.
studypro2
: 28 июня 2017
КОНТРОЛЬНАЯ РАБОТА 1
По территориям региона за некоторый год приводятся данные о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны (региона) в рублях, обозначаемые х, и среднедневная заработная плата в рублях — у. Соответственно: х — 78, 82, 87, 79, 89, 106, 67, 88, 73, 87, 76, 115; у — 133, 148, 134, 154, 162, 195, 139, 158, 152, 162, 159, 173.
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и средн
200 руб.
Эконометрика. (Контрольная работа В-5)
banderas0876
: 2 мая 2016
Содержание
Описание данных и задание 3
Ход работы 15
Задание 1. 15
1.1 Оценим параметры линейной регрессии МНК. 15
1.2 Оцените значимость каждого фактора в отдельности по t-критерию; 15
1.3 Оценим совместную значимость всех факторов по F-критерию 15
1.4 Проверим гетероскедастичность остатков 15
1.5 Проверим нормальность остатков; 15
Задание 2. 16
2.1. Проверить совместную значимость факторов X1, X3. 16
2.2. RESET тест Рамсея 16
2.3 Тест Бреуша – Годфри 18
2.3 Тест Чоу (I форма) 29
2.4. Проверка
150 руб.
Контрольная работа по дисциплине "Эконометрика"
ДО Сибгути
: 26 декабря 2015
Задание.
Изучается зависимость цены на некоторый товар длительного пользования в магазинах немаленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными);
•
150 руб.
Лабораторная работа 1. Эконометрика Вариант 11, буква "Т"
atm87
: 9 сентября 2022
по теме: «Нелинейные регрессионные модели»
Цель: научиться строить и исследовать нелинейные эконометрические модели.
План работы:
1. Изучить основные теоретические сведения по теме.
2. Разобрать решение типового примера с использованием стандартного пакета MS Excel, надстройка «Анализ данных», меню – Сервис.
3. Выполнить задание 1 к лабораторной работе 1 согласно варианту и представить отчет по заданию в рекомендуемой форме.
Методические рекомендации:
1. Построить график подбора значений
1000 руб.
Эконометрика. Контрольная работа. Вариант 16
ilsy
: 31 октября 2017
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
700 руб.
Эконометрика, контрольная работа, вариант 2
Ната4ка
: 11 февраля 2017
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели.
В среде MATRIXER была построена следующая модель линейной регрессии:
Обычный метод наименьших квадратов
(линейная регрессия)
Зависимая переменная: Y
Количество наблюдений: 480
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями.
200 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.