Теория массового обслуживания. Контрольная работа. 4 семестр. 1 вариант
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
- Microsoft Excel
Описание
Промежуточное звено компьютерной сети Supernet обслуживает запросы от 5 абонентов по двум телефонным каналам. Компьютер каждого абонента выходит на связь по любому свободному каналу. Если же оба канала заняты, абонент получает отказ. Администрация решила провести статистическое исследование для того, чтобы оценить целесообразность реконструкции сети (таблица 1). Специальная программа фиксировала продолжительность работы каждого компьютера (таблица 3) и число обращений в сутки (таблица 2).
Необходимо оценить вероятность отказа при подключении к сети после реконструкции двумя способами:
1) Аналитически, при этом считать интенсивность работы каждого терминала одинаковой (т.е. усреднённой),
2) Методом Монте - Карло, при этом использовать не усреднённые оценки интенсивностей. По результатам работы программы построить доверительный интервал для вероятности отказа при уровне значимости 0,05.
Вариант контрольной работы определяется по последней цифре пароля. Согласно варианту определяются:
– планируемые изменения в сети (таблица 1)
– количество подключений каждого абонента (таблица 2)
– время работы каждого абонента (таблица 3).
Контрольная работа должна содержать:
– постановку задачи (вместе с данными из таблиц 2 и 3)
– полное решение аналитическим способом (граф системы, формулы, вычисленные значения и комментарии вычислений)
– программу на языке С или Pascal, моделирующую работу системы методом Монте – Карло любым из двух способов, описанных в п.2.2 (эта же программа может вычислять интенсивности по таблицам 2 и 3); наличие комментариев в программе обязательно;
– результаты работы программы
– построение доверительного интервала по результатам работы программы.
Необходимо оценить вероятность отказа при подключении к сети после реконструкции двумя способами:
1) Аналитически, при этом считать интенсивность работы каждого терминала одинаковой (т.е. усреднённой),
2) Методом Монте - Карло, при этом использовать не усреднённые оценки интенсивностей. По результатам работы программы построить доверительный интервал для вероятности отказа при уровне значимости 0,05.
Вариант контрольной работы определяется по последней цифре пароля. Согласно варианту определяются:
– планируемые изменения в сети (таблица 1)
– количество подключений каждого абонента (таблица 2)
– время работы каждого абонента (таблица 3).
Контрольная работа должна содержать:
– постановку задачи (вместе с данными из таблиц 2 и 3)
– полное решение аналитическим способом (граф системы, формулы, вычисленные значения и комментарии вычислений)
– программу на языке С или Pascal, моделирующую работу системы методом Монте – Карло любым из двух способов, описанных в п.2.2 (эта же программа может вычислять интенсивности по таблицам 2 и 3); наличие комментариев в программе обязательно;
– результаты работы программы
– построение доверительного интервала по результатам работы программы.
Дополнительная информация
Сдавалась в 2015 г.
Оценка: зачёт
Оценка: зачёт
Похожие материалы
4 семестр ДО. «Теория массового обслуживания. Контрольная работа № 1. В3
Мария60
: 8 февраля 2020
«Теория массового обслуживания. Контрольная работа № 1. В3
Задача №1
В комнате имеется три окна (назовем их первое, второе и третье) на одном из окон стоит цветок. В зависимости от погодных условий хозяйка каждый день переставляет цветок на другое окно (или оставляет на том же окне) со следующими вероятностями:
Система описывается однородной цепью Маркова. Определить вероятности состояний системы на 3-й и 5-й дни для всех векторов начальных вероятностей (в нулевой день цветок может стоять на
250 руб.
Теория Массового Обслуживания. Контрольная работа №1 - Вариант №9 (4-й семестр)
zexor
: 9 сентября 2013
Промежуточное звено компьютерной сети Supernet обслуживает запросы от 5 абонентов по двум телефонным каналам. Компьютер каждого абонента выходит на связь по любому свободному каналу. Если же оба канала заняты, абонент получает отказ. Администрация решила провести статистическое исследование для того, чтобы оценить целесообразность реконструкции сети (убрать абонента 4 и добавить ещё один канал). Специальная программа фиксировала продолжительность работы каждого компьютера (таблица 3) и число обр
100 руб.
Контрольная работа. Теория массового обслуживания. Вариант №1, ДО, Семестр 4-й
Игуана
: 25 марта 2013
Задача No1.
В комнате имеется три окна (назовем их первое, второе и третье) на одном из окон стоит цветок. В зависимости от погодных условий хозяйка каждый день переставляет цветок на другое окно (или оставляет на том же окне) со следующими вероятностями: .
Система описывается однородной цепью Маркова. Определить вероятности состояний системы на 4-й и 7-й дни для всех векторов начальных вероятностей (в нулевой день цветок может стоять на любом окне).
Задача No2.
Рассматривается стационарный р
195 руб.
Теория массового обслуживания. Контрольная работа №1. Вариант №0
danila1271
: 28 ноября 2016
1. Постановка задачи
Промежуточное звено компьютерной сети Supernet обслуживает запросы от 5 абонентов по двум телефонным каналам. Компьютер каждого абонента выходит на связь по любому свободному каналу. Если же оба канала заняты, абонент получает отказ. Администрация решила провести статистическое исследование для того, чтобы оценить целесообразность реконструкции сети (таблица 1). Специальная программа фиксировала продолжительность работы каждого компьютера (таблица 3) и число обращений в сутк
250 руб.
Теория массового обслуживания. Контрольная работа №1. Вариант №9.
ДО Сибгути
: 10 февраля 2016
Дана неоднородная дискретная цепь Маркова со следующими матрицами перехода:
На последующих шагах матрицы повторяются, начиная с P(l).
Найти матрицы перехода H(l,n) за n – l шагов при:
• l = 4 n = 9;
• l = 11 n = 14.
Задача № 2
Поток кораблей, прибывающих в порт, простейший. Известно, что вероятности прибытия одного корабля в сутки и двух кораблей в сутки, равны. Чему равно среднее время между прибытиями двух кораблей?
Задача №3.
Рассматривается работа электронного прибора. Среднее время безо
350 руб.
Теория массового обслуживания. Контрольная работа №1. Вариант № 6.
balonand
: 3 ноября 2015
Задача 1.
В стране Ландии погода изменчива. Здесь никогда не бывает двух ясных дней подряд. Если сегодня ясно, то завтра с вероятностью 0,7 пойдет дождь или с вероятностью 0,3 снег. Если сегодня дождь, то с вероятностью 0,4 пойдет снег, с вероятностью 0,3 погода не изменится, в остальных случаях прояснится. Если идет снег, то в половине случаев снег заменяется дождем, а в половине случаев погода становится ясно.
Требуется:
1. Выписать матрицу вероятностей переходов.
2. Построить граф перехо
200 руб.
Контрольная работа №1. Вариант 4 Теория массового обслуживания
Препод
: 9 сентября 2015
Задача №1
Рассматривается стационарный режим работы m = 6 канальной марковской системы массового обслуживания с отказами (M/M/m). Интенсивность поступления заявок . Интенсивность обслуживания .
Найти: 1. Среднее время между поступлениями заявок – ;
2. Вероятность отказа – .
3. Вероятность обслуживания требования
4. Среднее число занятых каналов – ;
5. Вероятность того, что произвольно взятый канал будет занят – ;
Задача №2
Матрица вероятностей перехода однородной дискрет
75 руб.
Теория массового обслуживания. Контрольная работа №1. Вариант №4
tpogih
: 11 января 2015
Промежуточное звено компьютерной сети Supernet обслуживает запросы от 5 абонентов по двум телефонным каналам. Компьютер каждого абонента выходит на связь по любому свободному каналу. Если же оба канала заняты, абонент получает отказ. Администрация решила провести статистическое исследование для того, чтобы оценить целесообразность реконструкции сети (таблица 1). Специальная программа фиксировала продолжительность работы каждого компьютера (таблица 3) и число обращений в сутки (таблица 2).
Табли
20 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.