Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №2
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание 1.
Вероятность соединения при телефонном вызове равна 0,9. Какова вероятность, что соединение произойдёт только при 4-ом вызове?
Задание 2.
В одной урне 5 белых шаров и 4 чёрных шаров, а в другой – 4 белых и 6 чёрных. Из первой урны случайным образом вынимают 3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,3. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того что число работающих машин будет не больше 3-х.
Задние 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [1,5; 2,5] и квантиль порядка 0,8.
Задание 5
Продолжительность телефонного разговора распределена по показательному закону с параметром l =0,25 (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Вероятность соединения при телефонном вызове равна 0,9. Какова вероятность, что соединение произойдёт только при 4-ом вызове?
Задание 2.
В одной урне 5 белых шаров и 4 чёрных шаров, а в другой – 4 белых и 6 чёрных. Из первой урны случайным образом вынимают 3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,3. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того что число работающих машин будет не больше 3-х.
Задние 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [1,5; 2,5] и квантиль порядка 0,8.
Задание 5
Продолжительность телефонного разговора распределена по показательному закону с параметром l =0,25 (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 09.06.2016
Рецензия:Уважаемый,
Разинкина Татьяна Эдуардовна
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 09.06.2016
Рецензия:Уважаемый,
Разинкина Татьяна Эдуардовна
Похожие материалы
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №2
Roma967
: 11 октября 2015
Задание 1.
Вероятность соединения при телефонном вызове равна 0,9. Какова вероятность, что соединение произойдёт только при 4-ом вызове?
Задание 2.
В одной урне 5 белых шаров и 4 чёрных шаров, а в другой – 4 белых и 6 чёрных. Из первой урны случайным образом вынимают 3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 6 печатных машин. Для каждой машины
450 руб.
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант №2
Amor
: 19 октября 2013
Задание 10.2: В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
Задание 11.2: Среднее число вызовов, поступающих на АТС в 1 мин, равно двум. Найти вероятность того, что за 4 мин поступит: а) 5 вызовов; б) менее пяти вызовов; в) более пяти вызовов. Предполагается, что поток вызовов – простейший.
В задачах 12.1-12.10 требуется найти: а) математическ
220 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №3
Jack
: 14 февраля 2017
Вариант No3
Задача 1:
Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 5 печатных машин
350 руб.
Другие работы
Налоговая система и ее эффективность. Налоги и их виды
Elfa254
: 26 октября 2013
Введение
1. Общие сведения налоговой системы
1.1 Понятия налогов и их роль
1.2 Налоговая система
1.3 Кривая Лаффера
1.4 Виды налогов
1.5 Как мы получаем зарплату?
1.6 Последствия «серой» зарплаты
1.7 Эффективность налоговой системы
2. Предложения правительства по решению дефицита пенсионного фонда
2.1 С больной головы…
2.2 Эффективность предлагаемых мер
2.3 Овчинка выделки стоит?
3. Возможные варианты улучшения экономики страны
3.1 О чём говорят исследования
3.2 Единая сумма пенсионного отчислен
10 руб.
Ценообразование на транспорте
СибирскийГУТИ
: 6 марта 2014
1. Теоретическая часть
1.1. Характеристика ценообразования на различных типах рынка
1.2. Ценообразование на авиаперевозки
1.3. Основные положения государственного регулирования тарифов на железнодорожном транспорте РФ
2. Практическая часть
Задача 1
УСЛОВИЕ ЗАДАЧИ
Определить розничную цену товара, если затраты на его производство включают:
- сырье и материалы – 3657 тыс. руб.
- возвратные отходы – 25,98 тыс. руб.
- топливо и энергия на технологические цели – 984 тыс. руб.
- заработная плата произ
70 руб.
Виброгаситель. Вариант 23
coolns
: 11 мая 2019
Виброгаситель. Вариант 23
Задание
1. Выполнить 3д модели деталей
2. Выполнить 3д модель сборочной единицы
3. Выполнить ассоциативные чертежи всех деталей.
4. Выполнить сборочный чертеж Виброгаситель
5. Выполнить спецификацию к сборочной единице.
Вариант 23 Виброгаситель
Виброгаситель – устройство для компенсации вибрации ударного
действия. Регулируемый виброгаситель ударного действия служит для устранения высокочастотных и низкочастотных вибраций. Данный виброгаситель устанавливают на резе
140 руб.
Вычислительная математика. Лабораторная работа № 2
1231233
: 19 сентября 2010
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность
достигнута, если (k – номер итерации, k = 0,1,… ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное
23 руб.