Контрольная работа. Алгебра и Геометрия. 1-й семестр, вариант №3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
Дополнительная информация
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 17.01.2015
Агульник Ольга Николаевна
Оценка:Зачет
Дата оценки: 17.01.2015
Агульник Ольга Николаевна
Похожие материалы
Контрольная работа "Алгебра и геометрия" 1-й семестр, вариант №3
Тупой студент
: 31 мая 2015
Зачет без замечаний
Контрольная работа "Алгебра и геометрия" 1 семестр, вариант №3
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медиа
100 руб.
Алгебра и Геометрия. 1-й семестр, вариант №3
Uiktor
: 3 ноября 2015
3. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны к
119 руб.
Контрольная работа по алгебре и геометрии.1-й семестр
СибирскийГУТИ
: 26 декабря 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
х-2у+3z=6
2x+3y-4z=20
3x-2y-2z=6
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
70 руб.
Контрольная работа по алгебре и геометрии. 1-й семестр
ДО Сибгути
: 24 декабря 2013
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
х-2у+3z=6
2x+3y-4z=20
3x-2y-2z=6
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
20 руб.
Алгебра и геометрия (1-й семестр). Контрольная работа. Все варианты
Aftalick
: 21 сентября 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3;
5. объём пирамиды А1А2А3А4..
100 руб.
Контрольная работа №1. Алгебра и геометрия. 1-й семестр, 3 вариант.
praslow
: 22 сентября 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
2.3. А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
100 руб.
Контрольная работа по дисциплине "Алгебра и Геометрия" 1-й семестр 3 вариант
ramzes14
: 13 октября 2011
1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
50 руб.
Контрольная работа "Алгебра и геометрия" 1-й семестр. 3-й вариант
lecture
: 19 февраля 2015
КОНТРОЛЬНАЯ РАБОТА по предмету "Алгебра и геометрия" 1 семестр 3 вариант
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4:
А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
160 руб.
Другие работы
Бюджетный дефицит и проблемы государственного долга
Lokard
: 24 октября 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 СУЩНОСТЬ И ПРОБЛЕМА ДЕФИЦИТА ГОСБЮДЖЕТА. ВЛИЯНИЕ ДЕФИЦИТА ГОСБЮДЖЕТА НА ЭКОНОМИЧЕСКИЙ ЦИКЛ. ГОСДОЛГ: ПРИЧИНЫ И ПОСЛЕДСТВИЯ
1.1 Понятие и функции государственного бюджета
1.2 Проблемы сбалансированности государственного бюджета
1.3 Государственный долг и методы его сбалансирования
2 ОСОБЕННОСТИ ЛИКВИДАЦИИ БЮДЖЕТНОГО ДЕФИЦИТА И ГОСДОЛГА В РБ
ЗАКЛЮЧЕНИЕ
CПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВЕДЕНИЕ
С самых давних времен, когда только возникало государство, страна нуждалас
10 руб.
Тепломассообмен КГУ Курган 2020 Задача 1 Вариант 69
Z24
: 12 января 2026
По горизонтально расположенной стальной трубе λ = 20 Вт/(м·К)) со скоростью ω течет вода, имеющая температуру tв. Снаружи труба охлаждается окружающим воздухом, температура которого tвоз при давлении 0,1 МПа. Определить коэффициенты теплоотдачи α1 и α2 соответственно от воды к стенке трубы и от стенки трубы к воздуху, коэффициент теплопередачи и тепловой поток ql, отнесенные к 1 м длины трубы, если внутренний диаметр трубы равен d1, внешний — d2. Данные, необходимые для решения задачи, выбрать и
250 руб.
Теплотехника РГАУ-МСХА 2018 Задача 7 Вариант 35
Z24
: 27 января 2026
Паропровод диаметром d2/d1 (рис. 8.3) покрыт слоем совелитовой изоляции толщиной δ2, мм. Коэффициенты теплопроводности материала трубы λ1, изоляции λ2=0,1 Вт/(м·К). Температуры пара tж1 и окружающего воздуха tж2, °С. Требуется определить линейный коэффициент теплопередачи kl, Вт/(м2·K), линейную плотность теплового потока ql, Вт/м и температуру наружной поверхности паропровода t3, °С
Ответить на вопросы:
Сформулируйте закон теплопроводности Фурье и дайте его математическое выражение.
Какой
200 руб.
Теплотехника 18.03.01 КубГТУ Задача 2 Вариант 90
Z24
: 23 января 2026
Водяной пар с давлением р1 и степенью сухости х1 из барабана котла-утилизатора поступает в пароперегреватель, где его температура повышается на величину Δt. После пароперегревателя пар подается в турбину, где адиабатно обратимо расширяется до давления p3.
Определить количество теплоты, подведенной к пару в пароперегревателе, работу цикла Ренкина, степень сухости пара в конце процесса расширения в турбине и термический КПД цикла. Определить работу цикла и КПД, если после пароперегревателя пар
200 руб.