Эконометрика. Контрольная работа. вариант 7-й
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 26.01.2017
Полетайкин Алексей Николаевич
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 26.01.2017
Полетайкин Алексей Николаевич
Похожие материалы
Эконометрика. Контрольная работа. Вариант №7
klimodi
: 31 мая 2015
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
300 руб.
Эконометрика. Контрольная работа. Вариант 7
nastya993
: 31 декабря 2015
1.1. Оценим предлагаемую модель методом наименьших
квадратов в среде Matrixer.
Задание 2.
2.1. Проверим совместную значимость факторов X1, X3
400 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №7
SibGOODy
: 31 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных приведен ниже:
I Y X1 X2 X3
1 258,7424251 19,00014401 15,00062408 20,003034
2 278,1483375 15,00042731 7,001206603 28,00818065
3 317,0628785 23,00018563 1,000471387 26,99586761
4 317,2176894 23,99930969 -2,000672058 25,99638428
5 312,8286505 20,0009705 -4,99776773 31,00499145
6 320,6573656 27,00095
800 руб.
Эконометрика. Экзамен. Вариант №7
rtt20
: 12 июня 2015
Описание задачи («Линейная регрессия»)
Изучается зависимость цены на некоторый товар длительного пользова-ния в магазинах не маленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
- цена товара в соседних магазинах (оценена экспертами – маркетологами по ближайшим 5 магазинам, в которых продается такой же товар),
- расстояние от магазина до ближайшей станции метро (условная дистан-ция до ближайшей станции метро по пешим маршр
350 руб.
Контрольная работа. Эконометрика
vladslad
: 27 июня 2016
Задание 2
1. Выполнить анализ динамики показателя, указанного в варианте задания, за 5 последних лет (в абсолютном и относительном выражении):
а) от года к году;
б) в среднем за рассматриваемый период.
Показатель – численность иностранных граждан по федеральным округам (ФО).
150 руб.
Экзамен по дисциплине Эконометрика. Вариант № 7
klimodi
: 25 июня 2015
ОЦЕНКА _ ХОРОШО!!!
Изучается зависимость цены на некоторый товар длительного пользования в магазинах не маленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобн
300 руб.
Экзаменационная работа по дисциплине: Эконометрика. Вариант №7
SibGOODy
: 31 августа 2018
Изучается зависимость цены на некоторый товар длительного пользования в магазинах не маленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
- цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
- расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобными);
- является ли данный магазин ч
800 руб.
Курсовая работа по дисциплине: Эконометрика. Вариант №7
ДО Сибгути
: 18 февраля 2016
Практическое занятие №1
«Знакомство с эконометрическим пакетом Econometric Views»
В сети Интернет была найдена версия программы, поддерживающая демо-режим - Eviews 6.0. Программа устанавливалась на компьютер под управлением ОС Windows 7 x64. Также был использован пакет MS Office 2010 Standard Edition.
Удалось произвести импорт данных из демонстрационного файла demo.xls, группировку данных, просмотр числовых характеристик (через команду меню View/Descriptive Stats/Individual Samples), вывод матр
100 руб.
Другие работы
Проект модернізації щокової дробарки для виробництва цементу мокрим способом
OstVER
: 29 декабря 2013
Вступ.
1. Огляд існуючих конструкцій машин для подрібнення матеріалів.
1.1. Конструкція і принцип роботи машин і обладнання для подрібнення матеріалів.
1.2. Опис конструкції і роботи пропонованої конструкції дробарки.
1.3. Обгрунтування необхідності проведення модернізації дробарки.
2. Конструкторсько-розрахункова частина.
2.1 Розрахунок параметрів
3. Технологічна частина
4. Експлуатаційна частина.
5. Техніка безпеки і охорона праці
6. Техніко-економічне обгрунтування проведення модернізації.
Ви
2100 руб.
Информатика Лабораторные работы №1,2,3 СибГУТИ
ollein666
: 28 мая 2022
Лабораторные работы №1, №2 и №3 по дисциплине Информатика СибГУТИ
100 руб.
Определение параметров сетей с использованием теории очередей. Модели M/G/1 и M/D/1
GnobYTEL
: 3 августа 2012
Практическая работа по дисциплине "Информационные сети и телекоммуникации", СФУ ИКИТ, 3 - ий курс, преподаватель Кузнецов А.С., 2011 г.
Задача: По заданным значениям параметров сети произвести расчет других параметров с использованием моделей типа M/D/1 и M/G/1.
20 руб.
Контрольная работа По дисциплине: Цифровая обработка сигналов. Вариант №48
Roma967
: 15 марта 2020
Задача №1
В соответствии с данными своего варианта (таблица 1), рассчитать рекурсивный цифровой фильтр нижних частот по аналоговому прототипу методом инвариантности импульсной характеристики (для нечетных вариантов) или методом билинейного z-преобразования (для четных вариантов). АЧХ фильтра имеет монотонно спадающий вид для 0<Q<pi рад.
Построить графики АЧХ и ослабления искомого цифрового фильтра. Привести схему фильтра в канонической форме.
Таблица 1 – Требования к БИХ-фильтру
Вариант: 48
Гра
1000 руб.