Эконометрика. Контрольная работа. вариант 7-й
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регрессии МНК;
1.2. Оцените значимость каждого фактора в отдельности по t-критерию;
1.3. Оцените совместную значимость всех факторов по F-критерию;
1.4. Проверка гетероскедастичности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
1.5. Проверка нормальности остатков (используйте результаты оценивания, приведенные в базовых статистиках уравнения в среде MATRIXER);
Задание 2. Проверка ряда гипотез о модели с помощью классических критериев, основанных на оценках регрессии МНК с ограничениями. Следуйте комментариям к пунктам 2.1. — 2.4., развернуто ответьте на все заданные вопросы.
2.1. Проверить совместную значимость факторов X1, X3;
Постройте вспомогательную регрессию, не включающую в себя переменные X 1 и X 3 . Сравните регрессии (исходную и вспомогательную) по сумме квадратов остатков, постройте F -Статистику для проверки существенности ограничений. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.2. RESET тест Рамсея;
После оценки исходного уравнения регрессии сохраните в отдельную переменную расчетные значения зависимой переменной (скрытая матрица \ Fitted , дайте ей новое имя) и постройте вспомогательную регрессию, в которой факторами являются не только переменные X 1 — X 3 , но и квадрат и куб расчетных значений исходного уравнения. Постройте F -статистику для проверки совместной значимости добавленных факторов. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.3. Проверка постоянства коэффициентов тестом Чоу I формы (выборку делить пополам)
Создайте вспомогательную переменную (назовите ее, скажем, Chow _ Break ), и задайте ей значения (можно в ручную редактированием в среде MATRIXER , а можно предварительно создать переменную в среде Excel , а затем скопировать в MATRIXER ) — переменная принимает значение 1 для первой половины наблюдений, а для второй половины наблюдений — значение 0.
Оцените вспомогательную регрессию, в которой вместо исходных факторов X 1, X 2, X 3 участвует набор факторов X 1* Chow _ Break , X 2* Chow _ Break , X 3* Chow _ Break , X 1*(1- Chow _ Break ), X 2*(1- Chow _ Break ), X 3*(1- Chow _ Break ). Создавать новые факторы не обязательно, достаточно указать их формулы непосредственно в строке команд при записи команды для оценки регрессии МНК.
Сравните полученную вспомогательную и исходную регрессии, постройте F -статистику для проверки равенства коэффициентов при «разных половинах» исходных факторов во вспомогательной регрессии. Сколько ограничений в данном случае проверяется? Какая из регрессий является регрессией без ограничений, а какая с учетом ограничений? Каково значение статистики и РДУЗ? Каков результат теста и его интерпретация?
2.4. Проверка гетероскедастичности (тест Бреуша – Годфри – Пагана);
После оценки исходной регрессии сохраните в отдельную переменную остатки из уравнения (скрытая матрица \ Resids , дайте ей новое имя, например, Resid 1 ) и рассчитайте квадрат остатков (введите в командное окно команду R esid2:= R esid1^2 и нажмите «Выполнить», теперь в переменной Resid 2 — квадраты остатков исходного уравнения).
Создайте вспомогательную регрессию, где в качестве зависимой выступает переменная Resi d2 , а факторы — исходный набор факторов, номер наблюдения (для него придется создать отдельную переменную, либо используйте интерактивную переменную $ i ) , квадраты факторов (также подумайте, какие еще переменные можно добавить в эту регрессию). Оцените вклад каждого из этих факторов в зависимую переменную, есть ли между ней и какими-либо факторами существенная корреляция? Проверьте совместную значимость всех факторов в этой вспомогательной регрессии, при необходимости удалите незначимые факторы и переоцените уравнение. Какова интерпретация результата? Как можно использовать результаты этого теста?
Дополнительная информация
Оценена Ваша работа по предмету: Эконометрика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 26.01.2017
Полетайкин Алексей Николаевич
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 26.01.2017
Полетайкин Алексей Николаевич
Похожие материалы
Эконометрика. Контрольная работа. Вариант №7
klimodi
: 31 мая 2015
Описание данных и задание
Рассматривается модель линейной регрессии ;Y — зависимая переменная; X j — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии;
Задание 1. Оценка параметров регрессии МНК, базовая «инференция» о модели (t-критерий, F-критерий), базовый анализ остатков модели. Проделайте необходимые расчеты в среде MATRIXER , приведите их результаты и прокомментируйте согласно пунктам 1.1. — 1.5. задания.
1.1. Оцените параметры линейной регр
300 руб.
Эконометрика. Контрольная работа. Вариант 7
nastya993
: 31 декабря 2015
1.1. Оценим предлагаемую модель методом наименьших
квадратов в среде Matrixer.
Задание 2.
2.1. Проверим совместную значимость факторов X1, X3
400 руб.
Контрольная работа по дисциплине: Эконометрика. Вариант №7
SibGOODy
: 31 августа 2018
Описание данных
Рассматривается модель линейной регрессии; Y — зависимая переменная; Xj — факторы регрессии; i — номер наблюдения; действуют стандартные предположения линейной регрессии
Фрагмент данных приведен ниже:
I Y X1 X2 X3
1 258,7424251 19,00014401 15,00062408 20,003034
2 278,1483375 15,00042731 7,001206603 28,00818065
3 317,0628785 23,00018563 1,000471387 26,99586761
4 317,2176894 23,99930969 -2,000672058 25,99638428
5 312,8286505 20,0009705 -4,99776773 31,00499145
6 320,6573656 27,00095
800 руб.
Эконометрика. Экзамен. Вариант №7
rtt20
: 12 июня 2015
Описание задачи («Линейная регрессия»)
Изучается зависимость цены на некоторый товар длительного пользова-ния в магазинах не маленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
- цена товара в соседних магазинах (оценена экспертами – маркетологами по ближайшим 5 магазинам, в которых продается такой же товар),
- расстояние от магазина до ближайшей станции метро (условная дистан-ция до ближайшей станции метро по пешим маршр
350 руб.
Контрольная работа. Эконометрика
vladslad
: 27 июня 2016
Задание 2
1. Выполнить анализ динамики показателя, указанного в варианте задания, за 5 последних лет (в абсолютном и относительном выражении):
а) от года к году;
б) в среднем за рассматриваемый период.
Показатель – численность иностранных граждан по федеральным округам (ФО).
150 руб.
Экзамен по дисциплине Эконометрика. Вариант № 7
klimodi
: 25 июня 2015
ОЦЕНКА _ ХОРОШО!!!
Изучается зависимость цены на некоторый товар длительного пользования в магазинах не маленького города. Имеются данные о цене товара в 120 магазинах, а также такая дополнительная информация, как:
• Цена товара в соседних магазинах (оценена экспертами-маркетологами по ближайшим 5 магазинам, в которых продается такой же товар);
• Расстояние от магазина до ближайшей станции метро (условная дистанция до ближайшей станции метро по пешим маршрутам, считающимся удобн
300 руб.
Контрольная работа №1. Эконометрика.
studypro2
: 28 июня 2017
КОНТРОЛЬНАЯ РАБОТА 1
По территориям региона за некоторый год приводятся данные о среднедушевом прожиточном минимуме в день на одного трудоспособного жителя страны (региона) в рублях, обозначаемые х, и среднедневная заработная плата в рублях — у. Соответственно: х — 78, 82, 87, 79, 89, 106, 67, 88, 73, 87, 76, 115; у — 133, 148, 134, 154, 162, 195, 139, 158, 152, 162, 159, 173.
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и средн
200 руб.
Эконометрика. (Контрольная работа В-5)
banderas0876
: 2 мая 2016
Содержание
Описание данных и задание 3
Ход работы 15
Задание 1. 15
1.1 Оценим параметры линейной регрессии МНК. 15
1.2 Оцените значимость каждого фактора в отдельности по t-критерию; 15
1.3 Оценим совместную значимость всех факторов по F-критерию 15
1.4 Проверим гетероскедастичность остатков 15
1.5 Проверим нормальность остатков; 15
Задание 2. 16
2.1. Проверить совместную значимость факторов X1, X3. 16
2.2. RESET тест Рамсея 16
2.3 Тест Бреуша – Годфри 18
2.3 Тест Чоу (I форма) 29
2.4. Проверка
150 руб.
Другие работы
Техническая термодинамика и теплотехника УГНТУ Задача 6 Вариант 44
Z24
: 16 декабря 2025
Газ — воздух с начальной температурой t1=27ºC сжимается в одноступенчатом поршневом компрессоре от давления p1=0,1 МПа до давления р2. Сжатие может происходить по изотерме, по адиабате и по политропе с показателем политропы n. Определить для каждого из трех процессов сжатия:
— конечную температуру газа t2,ºC;
— отведенную от газа теплоту Q,кВт;
— теоретическую мощность компрессора N, если его производительность G.
Дать сводную таблицу и изображение процессов в p-υ и T-s — диаграммах.
220 руб.
Авангард, сущность и особенности направления.
Mega1
: 13 августа 2020
Оглавление
Введение
Глава I. Русский авангард как феномен искусства 20 века
Глава II. Направления в русском авангарде
2.1 Футуризм
2.2 Кубофутуризм
и тд
200 руб.
Сетевые базы данных, Лабораторная работа 3, Вариант 0, Создание таблиц. Последовательности, Вставка, изменение и удаление данных из таблиц, Транзакции, сибГУТИ
Fluttermen
: 23 декабря 2018
7 семестр.
Сетевые базы данных
Лабораторная работа 3
Вариант 0
Тема: Создание таблиц. Последовательности
Тема 2: Вставка, изменение и удаление данных из таблиц
Тема 3: Транзакции
Задания :
1. Создать таблицу для хранения данных о высших учебных заведениях. Таблица должна содержать поле для уникального номера ВУЗа, названия, количества факультетов. Создать первичный ключ для уникального номера.
2. Напишите команды для вставки в таблицу 5-7 записей о ВУЗах. Создайте последовательность и исполь
120 руб.
ДО СИБГУТИ Контрольная работа по дисциплине "Экономика". Вариант №9 (2023)
Mijfghs
: 31 августа 2025
Задание для выполнения контрольной работы
1. На основании исходных данных в соответствие с вариантом студента рассчитать показатели:
-использования материальных ресурсов: основных производственных фондов (ОПФ) и оборотных средств (ОС) предприятия связи;
- использования трудовых ресурсов;
- себестоимости услуг связи;
- финансовых результатов деятельности предприятия.
2. Заполнить таблицы 2 – 5.
3. В каждом разделе после таблицы представить основные формулы, расчеты, оформить выводы.
4. В заклю
711 руб.