Задача №2 из Контрольной работы №3 (Вариант №4)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача No 2
Рассчитать потери пропускания и потери запирания в переключательном устройстве. Пояснить принцип действия и работу диодов в переключательном устройстве на p-i-n-диодах. Отметить преимущества и недостатки использования p-i-n -диодов в переключателях.
Мощность в плече диода в режиме пропускания равна = 20 Вт.
Мощность в плече диода в режиме запирания равна = 10 мВт.
Решение.
Потери пропускания равны
Потери запирания равны
Переключатель СВЧ-мощности позволяет направлять сигнал по различным каналам линии передач. Для управления СВЧ-мощностью используются переключательные полупроводниковые диоды. Управляющее действие диода основано на изменении его сопротивления при изменении значения и полярности поданного на него смещения.
Простейшая схема, поясняющая механизм работы устройства с управляющим диодом, показана на рис. 2.1.
Рис.2.1.
Диод с полным сопротивлением Z включен параллельно в линию с волновым сопротивлением Z0. Линия согласована с нагрузкой, т. е. Z0=Zн (Zн - полное сопротивление нагрузки).
Ослабление сигнала в линии, обусловленное влиянием СВЧ-диода, определяется коэффициентом вносимого затухания:
Если ввести приведенную проводимость Z0/Z=G+iB, то L преобразуется к виду
При обратном смещении на диоде его сопротивление велико (G<<1) и если емкость диода мала (В<<1), то L0, т. е. потери малы и диод не нарушает условия распространения волны в линии.
При прямом смещении сопротивление диода близко к нулю (G>>1) и реализуется режим запирания, при котором в нагрузку просачивается незначительная часть входной мощности, основная же доля мощности отражается от диода обратно к генератору.
Поглощаемая диодом мощность
Из формулы видно, что значение Рпогл мало как в режиме пропускания (G<<1) так и в режиме запирания (G>>1), поэтому маломощный диод может управлять большой мощностью в СВЧ-тракте. Предельная коммутируемая мощность определяется предельно допустимой рассеиваемой мощностью диода, отношением Рпогл/Рвх, а также напряжением пробоя.
Эквивалентные схемы переключательного диода при подаче прямого и обратного смешений показаны на рис.2.2, а, б. Здесь Rпр и Rобр – сопро-тивления полупроводниковой структуры при прямом и обратном смещениях с учетом сопротивления базы и контактов; Скор – емкость корпуса; Сбар – барьерная емкость; Lпос - индуктивность выводов.
Рис.2.2.
Для переключения больших мощностей используются в основном р-i-n-диоды. P-i-n-структура состоит из сильнолегированных р- и п-областей, разделенных слоем высокоомного материала с малой концентрацией примеcи, близкого по свойствам к собственному полупроводнику (i-типа). Толщина высокоомной области может достигать нескольких микрометров, поэтому р-i-n-структуры обладают малой удельной емкостью. У р-i-n-структур можно увеличивать площадь, а следовательно, рассеиваемую мощность. Кроме того у р-i-n-структур пробивное напряжение может достигать нескольких киловольт.
В реальных структурах i-слой представляет собой слаболегированный полупроводник n- или р-типа и структуры называются соответственно р+--п+ или р+--п+-структурами. На рис. 2.3 показана схема р+--п+-структуры с достаточно резкими переходами р+- и -п+ и со значительной толщиной высокоомной области w (рис. 2.3, а).
Рис. 2.3.
Здесь же приведены распределение концентрации примеси (рис. 2.3, б), объемного заряда (рис.2.3, в, д) и напряженности поля (рис. 2.3, г, е) при нулевом (рис. 2.3, в, г) и большом обратном (рис. 2.3, д, е) смещениях. Ширина обедненной основными носителями области l зависит от концентрации примеси в -области и от обратного смещения. С ростом обратного смещения ширина обедненной области растет и при некотором отрицательном напряжении обедненная область перекроет весь высокоомный слой. Тогда структура станет эквивалентной обычному диоду с широким запорным слоем или конденсатору с малыми потерями, в котором значение емкости практически не зависит от напряжения.
При прямом смещении носители заряда инжектируются из п- и p-областей в i-область, что приводит к существенному снижению сопротивления диода.
Быстродействие р-i-n-диодов при их переключении ограничено временем рассасывания заряда, накопленного в i-слое. Это время зависит от толщины слоя, времени жизни носителей и соотношения между прямым и обратным токами.
Диоды с широкой базой могут коммутировать мощности в сотни ватт в непрерывном режиме и десятки киловатт в импульсе при времени восстановления 1...10 мкс. Диоды с узкой базой имеют Р<1 Вт, но могут обеспечивать быстродействие в десятки наносекунд.
На рис.2.4 представлено схематическое изображение конструкции переключателя коаксиального типа.
Рис. 2.4.
P-i-n-диоды Д1, Д2 установлены в обоих плечах переключателя. Смещения на диоды подаются через проводники 1, 3. Для подстройки входного тракта используется емкостный штырь 2.
Преимуществом использования p-i-n-диодов в переключателях является быстрое переключение мощностей.
Недостатком использования p-i-n-диодов в переключателях является относительно медленное переключение больших мощностей (по сравнению с переключением малых мощностей).
Рассчитать потери пропускания и потери запирания в переключательном устройстве. Пояснить принцип действия и работу диодов в переключательном устройстве на p-i-n-диодах. Отметить преимущества и недостатки использования p-i-n -диодов в переключателях.
Мощность в плече диода в режиме пропускания равна = 20 Вт.
Мощность в плече диода в режиме запирания равна = 10 мВт.
Решение.
Потери пропускания равны
Потери запирания равны
Переключатель СВЧ-мощности позволяет направлять сигнал по различным каналам линии передач. Для управления СВЧ-мощностью используются переключательные полупроводниковые диоды. Управляющее действие диода основано на изменении его сопротивления при изменении значения и полярности поданного на него смещения.
Простейшая схема, поясняющая механизм работы устройства с управляющим диодом, показана на рис. 2.1.
Рис.2.1.
Диод с полным сопротивлением Z включен параллельно в линию с волновым сопротивлением Z0. Линия согласована с нагрузкой, т. е. Z0=Zн (Zн - полное сопротивление нагрузки).
Ослабление сигнала в линии, обусловленное влиянием СВЧ-диода, определяется коэффициентом вносимого затухания:
Если ввести приведенную проводимость Z0/Z=G+iB, то L преобразуется к виду
При обратном смещении на диоде его сопротивление велико (G<<1) и если емкость диода мала (В<<1), то L0, т. е. потери малы и диод не нарушает условия распространения волны в линии.
При прямом смещении сопротивление диода близко к нулю (G>>1) и реализуется режим запирания, при котором в нагрузку просачивается незначительная часть входной мощности, основная же доля мощности отражается от диода обратно к генератору.
Поглощаемая диодом мощность
Из формулы видно, что значение Рпогл мало как в режиме пропускания (G<<1) так и в режиме запирания (G>>1), поэтому маломощный диод может управлять большой мощностью в СВЧ-тракте. Предельная коммутируемая мощность определяется предельно допустимой рассеиваемой мощностью диода, отношением Рпогл/Рвх, а также напряжением пробоя.
Эквивалентные схемы переключательного диода при подаче прямого и обратного смешений показаны на рис.2.2, а, б. Здесь Rпр и Rобр – сопро-тивления полупроводниковой структуры при прямом и обратном смещениях с учетом сопротивления базы и контактов; Скор – емкость корпуса; Сбар – барьерная емкость; Lпос - индуктивность выводов.
Рис.2.2.
Для переключения больших мощностей используются в основном р-i-n-диоды. P-i-n-структура состоит из сильнолегированных р- и п-областей, разделенных слоем высокоомного материала с малой концентрацией примеcи, близкого по свойствам к собственному полупроводнику (i-типа). Толщина высокоомной области может достигать нескольких микрометров, поэтому р-i-n-структуры обладают малой удельной емкостью. У р-i-n-структур можно увеличивать площадь, а следовательно, рассеиваемую мощность. Кроме того у р-i-n-структур пробивное напряжение может достигать нескольких киловольт.
В реальных структурах i-слой представляет собой слаболегированный полупроводник n- или р-типа и структуры называются соответственно р+--п+ или р+--п+-структурами. На рис. 2.3 показана схема р+--п+-структуры с достаточно резкими переходами р+- и -п+ и со значительной толщиной высокоомной области w (рис. 2.3, а).
Рис. 2.3.
Здесь же приведены распределение концентрации примеси (рис. 2.3, б), объемного заряда (рис.2.3, в, д) и напряженности поля (рис. 2.3, г, е) при нулевом (рис. 2.3, в, г) и большом обратном (рис. 2.3, д, е) смещениях. Ширина обедненной основными носителями области l зависит от концентрации примеси в -области и от обратного смещения. С ростом обратного смещения ширина обедненной области растет и при некотором отрицательном напряжении обедненная область перекроет весь высокоомный слой. Тогда структура станет эквивалентной обычному диоду с широким запорным слоем или конденсатору с малыми потерями, в котором значение емкости практически не зависит от напряжения.
При прямом смещении носители заряда инжектируются из п- и p-областей в i-область, что приводит к существенному снижению сопротивления диода.
Быстродействие р-i-n-диодов при их переключении ограничено временем рассасывания заряда, накопленного в i-слое. Это время зависит от толщины слоя, времени жизни носителей и соотношения между прямым и обратным токами.
Диоды с широкой базой могут коммутировать мощности в сотни ватт в непрерывном режиме и десятки киловатт в импульсе при времени восстановления 1...10 мкс. Диоды с узкой базой имеют Р<1 Вт, но могут обеспечивать быстродействие в десятки наносекунд.
На рис.2.4 представлено схематическое изображение конструкции переключателя коаксиального типа.
Рис. 2.4.
P-i-n-диоды Д1, Д2 установлены в обоих плечах переключателя. Смещения на диоды подаются через проводники 1, 3. Для подстройки входного тракта используется емкостный штырь 2.
Преимуществом использования p-i-n-диодов в переключателях является быстрое переключение мощностей.
Недостатком использования p-i-n-диодов в переключателях является относительно медленное переключение больших мощностей (по сравнению с переключением малых мощностей).
Похожие материалы
Подшипник. Вариант 4
coolns
: 10 марта 2023
Подшипник. Вариант 4
По двум проекциям построить третью проекцию с применением разрезов, указанных в схеме, изометрическую проекцию учебной модели с вырезом передней четверти. Нанести размеры.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помогу.
100 руб.
Плита. Вариант 4
coolns
: 19 января 2023
Плита. Вариант 4
Заменить вид спереди разрезом А-А
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) сделано и открываются в компасе v13, компас v14, компас v15, компас v16, компас v17, компас v18, компас v19, компас v20, компас v21, компас v22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помогу.
80 руб.
Пластинка. Вариант 4
coolns
: 19 января 2023
Пластинка. Вариант 4
Заменить вид слева разрезом А-А.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) сделано и открываются в компасе v13, компас v14, компас v15, компас v16, компас v17, компас v18, компас v19, компас v20, компас v21, компас v22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помогу.
80 руб.
Опора. Вариант 4
coolns
: 19 января 2023
Опора. Вариант 4
Заменить вид слева профильным разрезом.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) сделано и открываются в компасе v13, компас v14, компас v15, компас v16, компас v17, компас v18, компас v19, компас v20, компас v21, компас v22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помогу.
80 руб.
Распорка. Вариант 4
coolns
: 19 января 2023
Распорка. Вариант 4
Заменить вид спереди разрезом А-А.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) сделано и открываются в компасе v13, компас v14, компас v15, компас v16, компас v17, компас v18, компас v19, компас v20, компас v21, компас v22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С. Отвечу и помогу.
80 руб.
Основа. Вариант 4
coolns
: 19 января 2023
Основа. Вариант 4
По приведенным изображениям детали построить вид слева и выполнить необходимые разрезы.
Чертеж и 3d модель (все на скриншотах показано и присутствует в архиве) сделано и открываются в компасе v13, компас v14, компас v15, компас v16, компас v17, компас v18, компас v19, компас v20, компас v21, компас v22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем
120 руб.
Упор. Вариант 4
lepris
: 30 ноября 2022
Упор. Вариант 4
Графическая работа ИГ 02 «Эскиз простой детали»
Цель: Научиться строить виды и разрезы простой детали по ее наглядному
изображению.
Содержание: Выполнить эскиз детали на миллиметровой бумаге формата А3.
Эскиз выполняется обязательно в трех видах (главный, сверху и слева) с применением полезных разрезов и сечений. Для симметричных деталей выполнить половинчатые разрезы.
3d модель и чертеж выполнен на формате А3 (все на скриншотах показано и присутствует в архиве) выполнены в к
125 руб.
Прокладка. Вариант 4
lepris
: 1 октября 2022
Прокладка. Вариант 4
Вычертить изображения контуров деталей и нанести размеры.
Чертеж выполнен на формате А4 (все на скриншотах показано и присутствует в архиве) выполнены в компасе 3D v13, возможно открыть в 14,15,16,17,18,19,20,21,22 и выше версиях компаса.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
50 руб.
Другие работы
Деталировка-Сборочный чертеж-Рама для установки кабины оператора колтюбинговой установки: Рама сварная, Нога регулируемая, Перекладина, Гайка регулирующая, Ручка, Нога выдвижная, Опора-Чертежи-Графическая часть-Оборудование для капитального ремонта, обраб
as.nakonechnyy.92@mail.ru
: 24 июня 2016
Деталировка-Сборочный чертеж-Рама для установки кабины оператора колтюбинговой установки: Рама сварная, Нога регулируемая, Перекладина, Гайка регулирующая, Ручка, Нога выдвижная, Опора-Чертежи-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Оборудование для капитального ремонта, обработки пласта, бурения и цементирования нефтяных и газовых скважин-Курсовая работа-Дипломная работа
677 руб.
Расчет аналоговых и дискретных устройств связи. Вариант №14
b1nom
: 21 января 2018
Спроектировать дискретный фильтр, выделяющий гармоническое колебание заданной частоты из сигнала на выходе нелинейного преобразователя и удовлетворяющий условиям, указанным в таблице 1.
Схема (а)
КТ312В
fг = 15,1 кГц
Rк = 0,3 кОм
Uпит. авт. = 10 В
Схема 3.2б
КП305И
Uо = -5,7 В
Um = 3,7 В
n=3
ΔА = 1 дБ
Amin. = 16 дБ
m=2
970 руб.
Клапан воздушный деталировка
bublegum
: 31 августа 2020
Клапан воздушный сборочный чертеж
Клапан воздушный спецификация
Поз.1 Ручка
Поз.2 Корпус
Поз.3 Стержень
Поз.4 Эксцентрик
Поз.5 Колпак
Поз.6 Клапан
Поз.7 Втулка резьбовая
Поз.8 Опорная шайба
Поз.9 Втулка
Поз.10 Прокладка
Ручка 1 – армированная деталь. Рифленый цилиндр с проточкой и резьбовым отверстием опрессован пластмассой. В отверстие М5 ввертывается цилиндрический стержень 3, который служит для поворота эксцентрика 4. Корпус 2 изготовлен из стали. Фланец корпуса имеет четыре отверстия для кр
350 руб.
Организация технического сервиса в филиале «Рассвет» ООО «Нефтехимагропром» Республики Татарстан с разработкой системы управления производством
Рики-Тики-Та
: 18 декабря 2015
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ……………………………………………………………………………
1 АНАЛИЗ ПРОИЗВОДСТВЕННО-ЭКОНОМИЧЕСКРОЙ ДЕЯТЕЛЬНОСТИ И СИСТЕМЫ УПРАВЛЕНИЯ В АФ «ТАТАРСТАН» Новошешминского района РТ……………………..................
1.1 Местоположение, размеры землепользования и природные условия хозяйствования……
1.2 Организационно-производственная структура и специализация хозяйства…
1.3 Мероприятия по повышению эффективности управленческого труда………
1.3.1 Пути совершенствования структуры управления предприятия
1.3.2 Рекомендации по с
825 руб.