Сокращение потерь нефти при эксплуатации резервуарных парков-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Сокращение потерь нефти при эксплуатации резервуарных парков-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
Резервуар - емкость, предназначенная для хранения, приема, откачки и измерения объема нефти. Резервуарный парк - группа (группы) резервуаров, предназначенных для приема, хранения и откачки нефти и размещенных на территории, ограниченной по периметру обвалованием или ограждающей стенкой при наземных резервуарах и дорогами или противопожарными про-ездами - при подземных резервуарах.
Важной задачей при эксплуатации резервуарных парков является со-хранение качества и количества продукта. Это требует обеспечения макси-мальной герметизации всех процессов слива, налива и хранения. Основная доля потерь от испарения на протяжении всего пути движения нефти от про-мысла до нефтеперерабатывающих заводов, на самих заводах и нефтепро-дуктов от заводов до потребителей приходится на резервуары (по отраслям нефтяной промышленности количественные безвозвратные потери распреде-ляются следующим образом: потери на нефтепромыслах – 4,0%; на нефтепе-рерабатывающих заводах – 3,5%; при транспорте и хранении нефти и нефте-продуктов на нефтебазах и нефтепродуктопроводах – 2,0%. Всего 9,5%).
Все потери нефти и нефтепродуктов классифицируются на следующие виды: количественные потери; качественно-количественные потери, при ко-торых происходит количественная потеря с одновременными ухудшениями качества нефтепродукта, – потери от испарения; качественные потери, когда ухудшается качество нефтепродукта при неизменном количестве, – потери при недопустимом смешении.
Кроме того, следует выделить еще две группы потерь углеводородного сырья, характеризующие естественную убыль и безвозвратные потери при авариях.
Согласно «Нормам естественной убыли...» под естественной убылью понимаются потери, являющиеся следствием несовершенства существующих в данное время средств и технологии приема, хранения, отпуска и транспор-та продуктов. При этом допускается лишь уменьшение количества при со-хранении качества в пределах заданных требований. Естественная убыль может быть также обусловлена изменением физико-химических свойств нефтепродукта или воздействием метеорологических факторов.
Потери, вызванные нарушениями требований стандартов, технических условий, правил технической эксплуатации, хранения относят к аварийным или сверхнормативным потерям. К аварийным потерям относят также поте-ри, вызванные природными: стихийными бедствиями или действием посто-ронних сил.
Сокращение нормативных и сверхнормативных потерь нефти все еще остается одной из «вечных» проблем в области транспорта и хранения. За последние годы проделана значительная работа в этом направлении, но ве-личина потерь все еще велика. Специалисты отмечают, что она может со-ставлять 1,5% от добываемой нефти. Эта цифра не вызывает особого удивле-ния на современном уровне развитии технологии транспорта, хотя тридцать лет назад она также не превышала 2%. Нефть и нефтепродукты проходят сложный путь транспортировки, перевалки, хранения и распределения. Ори-ентировочно можно считать, что до непосредственного использования нефтепродукты подвергаются более чем 20 перевалкам, при этом 75% потерь происходит от испарения и только 25% от аварий и утечек.
Основная доля потерь приходится на резервуарные парки (до 70%), причем около 65% от испарения при «малых» и «больших» дыханиях.
Проведение различных мероприятий по снижению потерь дает поло-жительный эффект. Но даже по официальным данным видно, что потери еще очень велики.
Наибольшие потери нефти от испарения отмечаются в резервуарах со стационарной крышей. Величина их обычно составляет около 0,14% храни-мого объема, но в ряде случаев может увеличиваться в 1,5 раза. По данным СибНИИНП в 1м3 товарных нефтей Западной Сибири содержится от 0,15 до 0,76 м3 растворенного и окклюдированного газа. При движении нефти по трубопроводам такой газ переходит в газовую фазу, образуя пробки, а по-падая в резервуар, теряется в атмосферу через дыхательную арматуру.
Поэтому проведение методов борьбы с потерями нефти при хранении ее в резервуарах является актуальной задачей.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Характеристика фонда скважин
На 2013 год характеристика фонда скважин по Олейниковскому месторождению составила: эксплуатационный фонд - 31, по способам эксплуатации: фонтанных - 3; газлифтных нет; ШСНУ - 28, действующих 28, бездействующие - 3, в консервации нет; контрольных - 2; нагнетатель-ных нет; поглощающих для сброса сточных вод - 5; в ожидании лик-видации нет, ликвидированы после эксплуатации - 27.
Нефтяная залежь I блока эксплуатировалась 13 скважинами, из них 3 скважины фонтанные №139, 248, 252.
Скважина № 139 отделена от остальных скважин разрывным нарушением, абсолютная отметка фильтра 969 – 975 м, газовый фактор 40 м3/т, обводненность 90 %, дебит по жидкости 84 м3/сут, по нефти 7 т/сут. С увеличением обводненности скважина начала периодически са-мозадавливаться, увеличилось время простоя скважины. Протяженность нефтепровода до трапной установки 1 км, а так как содержание парафина и смол достигает до 9% давление в нефтепроводе поднялось до 1 МПа. Пери-одические тепловые обработки давали кратковременный эффект. Поэтому принято решение обвязать данную скважину на отдельную емкость с целью снижения противодавления на пласт и лучшего выноса воды. В течении 8 месяцев скважина работает без единой остановки, обводненность 85 %, дебит по жидкости 95 м3/сут, по нефти 11,8 т/сут. Дополнительно добыто нефти за 8 месяцев 1152т.
В скважине 252 с целью снижения обводненности были изолиро-ваны интервалы с абсолютными отметками 960 – 961 м и 965 – 958 м. Перфорирован интервал 956 – 958 м в результате проведенных работ дебит скважины по нефти увеличился с 0,4 до 5,1 т/сут.
Газовый фактор в течении года постепенно снижался и в ноябре составил 35 м3/т, пластовое давление в течении года практически не ме-нялось, осталось примерно на уровне прошлого года - 10,05 – 10,08 МПа. Однако обводненность постепенно увеличилась и достигнув кри-тического значения 99 % скважина начала самозадавливаться. Проведен-ные изоляционные работы позволили снизить обводненность до 87 % и таким образом получить прирост добычи до 4,7 т/сут.
Скважина 248 в течении I квартала работала с высокой обводнен-ностью до 99 %, газовый фактор 35 м3/т, пластовое давление не снижа-лось и составило 10,05 МПа. Дебиты колебались от 1,5 до 2 т/сут. Од-нако скважина периодически самозадавливается и в целом простои за три месяца составили 12 дней. С целью снижения обводненности продук-ции были произведены изоляционные работы.
Прикровельная часть пласта изолированна и вскрыта середина пласта с абсолютными отметками 956 – 958 м. Результатом работы стало снижение обводненности до 84 %, дополнительно добыто нефти за ме-сяц 400 т, среднесуточный дебит по нефти 13 тонн.
Таким образом, причина остановки скважин фонтанного фонда одна, это увеличение обводненности, и, как следствие, увеличение забойного дав-ления.
Критическое значение обводненности по I блоку 98–99 % при таком значении скважины начинают самозадавливаться. Одно из мероприятий по снижению обводненности в ОАО “ЛУКОЙЛ-Астраханьнефть” проведение изоляционных работ с последующим переводом скважины на фонтанный отбор. В 2012 году скважины № 139, 248, 252 Олейниковского место-рождения были переведены на данный режим работы с суточным отбо-ром 100 – 120 м3/сут. В результате наблюдалось снижение обводненности с 98 – 99 % до 84 – 85 %.
В таблице 2.1 представим технологический режим работы фонтан-ных скважин I блока Олейниковского месторождения.
Таблица 2.1
Технологический режим работы фонтанных скважин
№ скважины Толщина пласта, м Диа-метр НКТ, мм Длина НКТ, м Диаметр штуцера, мм Дебит Обводненность, % Газовый фактор, м3/т
Нефти, т/сут Жидко-сти, м3/cут
139
248
252 6
5
3 73
60
73 938
929
921 8
8
10 9
14
1,5 110
114
37 90
85
95 30
30
30
Рассмотрим работу механизированного фонда скважин Олейников-ского месторождения. Технологический режим работы скважин с ШСНУ по I блоку представлен в таблице 2.2.
Таблица 2.2
Технологический режим работы скважин с ШСНУ по блоку I
№ скважины Толщина пласта, м Тип СК Глубина спуска насоса, м Дебит Обводнен-ность, %
Нефти, т/сут Жидкости, м3/сут
100
107
120
126
127
131
134
138
247
248 3
2
3
3
5
10
4
4
17
5 СК-6
СК-8
РНАМ
РНАМ
РНАМ
СК-8
СК-6
СК-6
СК-8
СК-8 359
484
417
322
420
478
374
548
447
281 7
4
3
0,4
10
5
5
0,1
11
11 66
98
92
24
76
17
28
5
84
89 87
95
96
98
84
64
78
98
84
85
Среднесуточный дебит по всем скважинам составляет 56,5 т нефти и 579 м3/сут, средняя обводненность составляет 89 %, длина хода саль-никового штока колеблется в пределах 1,5 – 2,5 м, число качаний в ми-нуту от 5 до 7, диаметр используемых насосов 44 мм.
Технологический режим по блоку III представлен в таблице 2.3.
Таблица 2.3
Технологический режим работы скважин c ШСНУ по блоку III
№ скважины Толщина пласта, м Тип СК Глубина спуска насоса, м Дебит Обвод-ненность, %
нефти, т/сут жидкости, м3/сут
23
42
143
150
156
158
217
220
225
227
228
246
253
254 10
1
2
2
6
4
7
5
2
3
12
4
2
2 СК-6
СК-8
СК-8
СК-6
СК-6
СК-6
СК-6
СК-8
СК-6
СК-6
СК-6
СК-8
СК-8
СК-6 419
337
353
497
354
444
371
400
371
354
368
330
487
720 3
9
4
6
13
3
4
7,5
0,5
0,2
12
3,5
1
11 15
73
44
41
64
53
34
11
10
20
98
36
15
15 75
85
89
82
75
93
86
45
95
99
85
88
92
84
Среднесуточный дебит составляет 77,7 т/сут по нефти и 529 м3/сут по жидкости, средняя обводненность составляет 82 %, длина хода саль-никового штока колеблется от 1,2 до 3 м, число качаний от 5 до 8, диаметр насосов 44 мм. Из таблиц видно, что обводненность большин-ства скважин достигла критических значений рентабельности, это может привести к выводу части нерентабельных скважин из эксплуатации.
Значение газового фактора по скважинам колеблется в широких пределах и составляет в среднем 40 м3/м3.
Исходя из всего рассмотренного выше материала, можно сделать вывод, что Олейниковское месторождение находится на последней стадии разработки и характеризуется крайне низкими отборами нефти по сква-жинам.
Дальнейшая разработка данного месторождения будет связана с необходимостью применения различных методов увеличения дебитов, проведением работ по снижению обводненности скважин, рациональным планированием и проведением ремонтов скважин, установлением наибо-лее выгодных технологических режимов работы скважин.
2.2 Принципиальная схема подготовки нефти на месторождении
На каждом нефтяном месторождении нефть, поступающая со скважин, проходит предварительную подготовку на дожимных насосных станциях (ДНС), либо установках подготовки нефти (УПН). Далее она транспортиру-ется в центральные пункты подготовки и перекачки нефти (ЦППН). Дело в том, что в нефти содержится попутный нефтяной газ (ПНГ) и вода, которые необходимо извлечь с целью повышения её товарного качества. На данный момент попутный нефтяной газ извлекается из нефти путём её сепарации в один или несколько этапов (ступеней). Количество ступеней сепарации зави-сит от физико-химических свойств нефти, а именно от её газосодержания (Гс). Из своей практики могу сказать, что в большинстве случаев на ДНС нефть подготавливается в две ступени сепарации. Да, встречались объекты, имею-щие всего одну ступень сепарации, либо, ещё реже – три ступени. Однако, как я говорил, в большинстве случаев на ДНС нефть разгазируется в две ступени. Давление на сепараторе 1 ступени (P1ст) всегда больше, чем на сепа-раторах 2 и последующих ступеней (PNст). К примеру, могут быть такие по-казатели: P1ст=4 кгс/см2, P2ст=0,1 кгс/см2. Показатели давления зависят от мно-гих факторов, которые учитываются при разработке месторождения и вно-сятся в Технологическую схему. Количество сепараторов зависит от объёма добываемой нефти.
ВВЕДЕНИЕ
Резервуар - емкость, предназначенная для хранения, приема, откачки и измерения объема нефти. Резервуарный парк - группа (группы) резервуаров, предназначенных для приема, хранения и откачки нефти и размещенных на территории, ограниченной по периметру обвалованием или ограждающей стенкой при наземных резервуарах и дорогами или противопожарными про-ездами - при подземных резервуарах.
Важной задачей при эксплуатации резервуарных парков является со-хранение качества и количества продукта. Это требует обеспечения макси-мальной герметизации всех процессов слива, налива и хранения. Основная доля потерь от испарения на протяжении всего пути движения нефти от про-мысла до нефтеперерабатывающих заводов, на самих заводах и нефтепро-дуктов от заводов до потребителей приходится на резервуары (по отраслям нефтяной промышленности количественные безвозвратные потери распреде-ляются следующим образом: потери на нефтепромыслах – 4,0%; на нефтепе-рерабатывающих заводах – 3,5%; при транспорте и хранении нефти и нефте-продуктов на нефтебазах и нефтепродуктопроводах – 2,0%. Всего 9,5%).
Все потери нефти и нефтепродуктов классифицируются на следующие виды: количественные потери; качественно-количественные потери, при ко-торых происходит количественная потеря с одновременными ухудшениями качества нефтепродукта, – потери от испарения; качественные потери, когда ухудшается качество нефтепродукта при неизменном количестве, – потери при недопустимом смешении.
Кроме того, следует выделить еще две группы потерь углеводородного сырья, характеризующие естественную убыль и безвозвратные потери при авариях.
Согласно «Нормам естественной убыли...» под естественной убылью понимаются потери, являющиеся следствием несовершенства существующих в данное время средств и технологии приема, хранения, отпуска и транспор-та продуктов. При этом допускается лишь уменьшение количества при со-хранении качества в пределах заданных требований. Естественная убыль может быть также обусловлена изменением физико-химических свойств нефтепродукта или воздействием метеорологических факторов.
Потери, вызванные нарушениями требований стандартов, технических условий, правил технической эксплуатации, хранения относят к аварийным или сверхнормативным потерям. К аварийным потерям относят также поте-ри, вызванные природными: стихийными бедствиями или действием посто-ронних сил.
Сокращение нормативных и сверхнормативных потерь нефти все еще остается одной из «вечных» проблем в области транспорта и хранения. За последние годы проделана значительная работа в этом направлении, но ве-личина потерь все еще велика. Специалисты отмечают, что она может со-ставлять 1,5% от добываемой нефти. Эта цифра не вызывает особого удивле-ния на современном уровне развитии технологии транспорта, хотя тридцать лет назад она также не превышала 2%. Нефть и нефтепродукты проходят сложный путь транспортировки, перевалки, хранения и распределения. Ори-ентировочно можно считать, что до непосредственного использования нефтепродукты подвергаются более чем 20 перевалкам, при этом 75% потерь происходит от испарения и только 25% от аварий и утечек.
Основная доля потерь приходится на резервуарные парки (до 70%), причем около 65% от испарения при «малых» и «больших» дыханиях.
Проведение различных мероприятий по снижению потерь дает поло-жительный эффект. Но даже по официальным данным видно, что потери еще очень велики.
Наибольшие потери нефти от испарения отмечаются в резервуарах со стационарной крышей. Величина их обычно составляет около 0,14% храни-мого объема, но в ряде случаев может увеличиваться в 1,5 раза. По данным СибНИИНП в 1м3 товарных нефтей Западной Сибири содержится от 0,15 до 0,76 м3 растворенного и окклюдированного газа. При движении нефти по трубопроводам такой газ переходит в газовую фазу, образуя пробки, а по-падая в резервуар, теряется в атмосферу через дыхательную арматуру.
Поэтому проведение методов борьбы с потерями нефти при хранении ее в резервуарах является актуальной задачей.
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Характеристика фонда скважин
На 2013 год характеристика фонда скважин по Олейниковскому месторождению составила: эксплуатационный фонд - 31, по способам эксплуатации: фонтанных - 3; газлифтных нет; ШСНУ - 28, действующих 28, бездействующие - 3, в консервации нет; контрольных - 2; нагнетатель-ных нет; поглощающих для сброса сточных вод - 5; в ожидании лик-видации нет, ликвидированы после эксплуатации - 27.
Нефтяная залежь I блока эксплуатировалась 13 скважинами, из них 3 скважины фонтанные №139, 248, 252.
Скважина № 139 отделена от остальных скважин разрывным нарушением, абсолютная отметка фильтра 969 – 975 м, газовый фактор 40 м3/т, обводненность 90 %, дебит по жидкости 84 м3/сут, по нефти 7 т/сут. С увеличением обводненности скважина начала периодически са-мозадавливаться, увеличилось время простоя скважины. Протяженность нефтепровода до трапной установки 1 км, а так как содержание парафина и смол достигает до 9% давление в нефтепроводе поднялось до 1 МПа. Пери-одические тепловые обработки давали кратковременный эффект. Поэтому принято решение обвязать данную скважину на отдельную емкость с целью снижения противодавления на пласт и лучшего выноса воды. В течении 8 месяцев скважина работает без единой остановки, обводненность 85 %, дебит по жидкости 95 м3/сут, по нефти 11,8 т/сут. Дополнительно добыто нефти за 8 месяцев 1152т.
В скважине 252 с целью снижения обводненности были изолиро-ваны интервалы с абсолютными отметками 960 – 961 м и 965 – 958 м. Перфорирован интервал 956 – 958 м в результате проведенных работ дебит скважины по нефти увеличился с 0,4 до 5,1 т/сут.
Газовый фактор в течении года постепенно снижался и в ноябре составил 35 м3/т, пластовое давление в течении года практически не ме-нялось, осталось примерно на уровне прошлого года - 10,05 – 10,08 МПа. Однако обводненность постепенно увеличилась и достигнув кри-тического значения 99 % скважина начала самозадавливаться. Проведен-ные изоляционные работы позволили снизить обводненность до 87 % и таким образом получить прирост добычи до 4,7 т/сут.
Скважина 248 в течении I квартала работала с высокой обводнен-ностью до 99 %, газовый фактор 35 м3/т, пластовое давление не снижа-лось и составило 10,05 МПа. Дебиты колебались от 1,5 до 2 т/сут. Од-нако скважина периодически самозадавливается и в целом простои за три месяца составили 12 дней. С целью снижения обводненности продук-ции были произведены изоляционные работы.
Прикровельная часть пласта изолированна и вскрыта середина пласта с абсолютными отметками 956 – 958 м. Результатом работы стало снижение обводненности до 84 %, дополнительно добыто нефти за ме-сяц 400 т, среднесуточный дебит по нефти 13 тонн.
Таким образом, причина остановки скважин фонтанного фонда одна, это увеличение обводненности, и, как следствие, увеличение забойного дав-ления.
Критическое значение обводненности по I блоку 98–99 % при таком значении скважины начинают самозадавливаться. Одно из мероприятий по снижению обводненности в ОАО “ЛУКОЙЛ-Астраханьнефть” проведение изоляционных работ с последующим переводом скважины на фонтанный отбор. В 2012 году скважины № 139, 248, 252 Олейниковского место-рождения были переведены на данный режим работы с суточным отбо-ром 100 – 120 м3/сут. В результате наблюдалось снижение обводненности с 98 – 99 % до 84 – 85 %.
В таблице 2.1 представим технологический режим работы фонтан-ных скважин I блока Олейниковского месторождения.
Таблица 2.1
Технологический режим работы фонтанных скважин
№ скважины Толщина пласта, м Диа-метр НКТ, мм Длина НКТ, м Диаметр штуцера, мм Дебит Обводненность, % Газовый фактор, м3/т
Нефти, т/сут Жидко-сти, м3/cут
139
248
252 6
5
3 73
60
73 938
929
921 8
8
10 9
14
1,5 110
114
37 90
85
95 30
30
30
Рассмотрим работу механизированного фонда скважин Олейников-ского месторождения. Технологический режим работы скважин с ШСНУ по I блоку представлен в таблице 2.2.
Таблица 2.2
Технологический режим работы скважин с ШСНУ по блоку I
№ скважины Толщина пласта, м Тип СК Глубина спуска насоса, м Дебит Обводнен-ность, %
Нефти, т/сут Жидкости, м3/сут
100
107
120
126
127
131
134
138
247
248 3
2
3
3
5
10
4
4
17
5 СК-6
СК-8
РНАМ
РНАМ
РНАМ
СК-8
СК-6
СК-6
СК-8
СК-8 359
484
417
322
420
478
374
548
447
281 7
4
3
0,4
10
5
5
0,1
11
11 66
98
92
24
76
17
28
5
84
89 87
95
96
98
84
64
78
98
84
85
Среднесуточный дебит по всем скважинам составляет 56,5 т нефти и 579 м3/сут, средняя обводненность составляет 89 %, длина хода саль-никового штока колеблется в пределах 1,5 – 2,5 м, число качаний в ми-нуту от 5 до 7, диаметр используемых насосов 44 мм.
Технологический режим по блоку III представлен в таблице 2.3.
Таблица 2.3
Технологический режим работы скважин c ШСНУ по блоку III
№ скважины Толщина пласта, м Тип СК Глубина спуска насоса, м Дебит Обвод-ненность, %
нефти, т/сут жидкости, м3/сут
23
42
143
150
156
158
217
220
225
227
228
246
253
254 10
1
2
2
6
4
7
5
2
3
12
4
2
2 СК-6
СК-8
СК-8
СК-6
СК-6
СК-6
СК-6
СК-8
СК-6
СК-6
СК-6
СК-8
СК-8
СК-6 419
337
353
497
354
444
371
400
371
354
368
330
487
720 3
9
4
6
13
3
4
7,5
0,5
0,2
12
3,5
1
11 15
73
44
41
64
53
34
11
10
20
98
36
15
15 75
85
89
82
75
93
86
45
95
99
85
88
92
84
Среднесуточный дебит составляет 77,7 т/сут по нефти и 529 м3/сут по жидкости, средняя обводненность составляет 82 %, длина хода саль-никового штока колеблется от 1,2 до 3 м, число качаний от 5 до 8, диаметр насосов 44 мм. Из таблиц видно, что обводненность большин-ства скважин достигла критических значений рентабельности, это может привести к выводу части нерентабельных скважин из эксплуатации.
Значение газового фактора по скважинам колеблется в широких пределах и составляет в среднем 40 м3/м3.
Исходя из всего рассмотренного выше материала, можно сделать вывод, что Олейниковское месторождение находится на последней стадии разработки и характеризуется крайне низкими отборами нефти по сква-жинам.
Дальнейшая разработка данного месторождения будет связана с необходимостью применения различных методов увеличения дебитов, проведением работ по снижению обводненности скважин, рациональным планированием и проведением ремонтов скважин, установлением наибо-лее выгодных технологических режимов работы скважин.
2.2 Принципиальная схема подготовки нефти на месторождении
На каждом нефтяном месторождении нефть, поступающая со скважин, проходит предварительную подготовку на дожимных насосных станциях (ДНС), либо установках подготовки нефти (УПН). Далее она транспортиру-ется в центральные пункты подготовки и перекачки нефти (ЦППН). Дело в том, что в нефти содержится попутный нефтяной газ (ПНГ) и вода, которые необходимо извлечь с целью повышения её товарного качества. На данный момент попутный нефтяной газ извлекается из нефти путём её сепарации в один или несколько этапов (ступеней). Количество ступеней сепарации зави-сит от физико-химических свойств нефти, а именно от её газосодержания (Гс). Из своей практики могу сказать, что в большинстве случаев на ДНС нефть подготавливается в две ступени сепарации. Да, встречались объекты, имею-щие всего одну ступень сепарации, либо, ещё реже – три ступени. Однако, как я говорил, в большинстве случаев на ДНС нефть разгазируется в две ступени. Давление на сепараторе 1 ступени (P1ст) всегда больше, чем на сепа-раторах 2 и последующих ступеней (PNст). К примеру, могут быть такие по-казатели: P1ст=4 кгс/см2, P2ст=0,1 кгс/см2. Показатели давления зависят от мно-гих факторов, которые учитываются при разработке месторождения и вно-сятся в Технологическую схему. Количество сепараторов зависит от объёма добываемой нефти.
Дополнительная информация
5.2 Выводы и предложения
Экономическая эффективность внедрения мероприятий научно – тех-нического прогресса определяется как превышение стоимости оценки ре-зультатов над затратами по внедрению данного мероприятия.
В результате разработки месторождения произошло увеличение деби-та скважины на 29,8 тонны. Рост дебита скважины привел к повышению объема добычи нефти на 8725 тонну.
Увеличение объема добычи нефти привело к экономии себестоимости одной тонны нефти на 2982,44 руб.
Экономия затрат на добычу нефти позволила получить условно – го-довую экономию от эффективности разработки месторождения в сумме 41,55 млн. руб. Фактическая сумма прибыли составила 80,14 млн. руб. и превысила сумму прибыли получаемую до внедрения мероприятия на 65,74 млн. руб.
Удельная прибыль характеризует сумму дохода, приходящуюся на одну тонну нефти и в результате внедрения мероприятия она выросла на 2982,44 руб.
На основании вышеизложенного, можно сделать вывод о экономиче-ской целесообразности разработки месторождения.
ЗАКЛЮЧЕНИЕ
Хранение нефти и нефтепродуктов в вертикальных стальных цилин-дрических резервуарах связано с испарениями легких фракций углеводоро-дов. Несмотря на применяемые меры, общие потери нефтепродуктов велики и приносят значительные убытки. Это выражается потерями хранимых про-дуктов, осложнением пожарной обстановки в резервуарных парках, ухуд-шением условий труда обслуживающего персонала и загрязнением окружа-ющей среды. Поэтому сохранение количества и качества нефтепродуктов в процессе хранения в резервуарах является актуальной на сегодняшний день.
В ряде стран ужесточение требований охраны окружающей среды и промышленной безопасности заставляет принимать меры по герметизации резервуаров. Выбор типа резервуара в зависимости от испаряемости про-дукта строго регламентируется стандартами. Согласно ГОСТ 1510-84, легкоиспаряющиеся нефтепродукты должны храниться преимущественно в резервуарах с плавающей крышей. В Германии, например, нефтепродукты класса А1 с температурой вспышки ниже 21°С (в том числе сырые нефти и бензины) хранят в резервуарах с плавающей крышей. В результате за рубежом доля резервуаров с плавающим покрытием постоянно увеличи-вается. Одним из таких решений является оснащение действующего резерву-ара со стационарной кровлей внутренним плавающим покрытием, имеющи-ми более низкую стоимость по сравнению с плавающими крышами. Кроме того, резервуар со стационарной кровлей более приемлем для большей ча-сти климатических районов России.
В нашей стране было построено большое количество понтонов под-донного типа из стали с коробами по периметру. Однако большинство этих понтонов потонуло. На магистральных нефтепроводах доля потонувших стальных понтонов приближается к 100%. Потонувший стальной понтон практически не поддается восстановлению.
Как показывает практика, 40 – 60% пожаров на резервуарах проис-ходит при выводе резервуара из эксплуатации (при зачистке, пропарке и т.п.). Поэтому для повышения промышленной безопасности резервуаров необходим понтон, не требующий обслуживания и ремонта, имеющий боль-шой срок службы.
Одним из признанно надежных является конструкция понтона, в которой настил удерживается на поплавках. Понтоны такой конструкции применяются в странах Западной Европы и США с 60-х годов и в настоящее время конструкция сборных понтонов из алюминиевых сплавов для верти-кальных стальных цилиндрических резервуаров стала традиционной.
Строятся легкие сборные понтоны из алюминиевых сплавов для ре-зервуаров объемом от 1000 до 30000 м3. В конструкции понтона использо-ваны наиболее коррозионно-стойкие алюминиевые сплавы отечественного производства.
Все детали понтона устанавливаются через люк диаметром 500 мм.
К достоинствам данной конструкции можно отнести следующие:
• большая плавучесть, регулируемая количеством поплавков;
• легкость и быстрота монтажа;
• малая масса по сравнению со стальными понтонами;
• применение типовых заготовок и узлов для резервуаров различной вместимости;
• легкость восстановления плавучести при потоплении;
• возможность ремонта без применения огневых работ;
• возможность автоматического удаления продукта с настила при любом уровне слива;
• возможность демонтажа для сборки в другом резервуаре.
Экономическая эффективность внедрения мероприятий научно – тех-нического прогресса определяется как превышение стоимости оценки ре-зультатов над затратами по внедрению данного мероприятия.
В результате разработки месторождения произошло увеличение деби-та скважины на 29,8 тонны. Рост дебита скважины привел к повышению объема добычи нефти на 8725 тонну.
Увеличение объема добычи нефти привело к экономии себестоимости одной тонны нефти на 2982,44 руб.
Экономия затрат на добычу нефти позволила получить условно – го-довую экономию от эффективности разработки месторождения в сумме 41,55 млн. руб. Фактическая сумма прибыли составила 80,14 млн. руб. и превысила сумму прибыли получаемую до внедрения мероприятия на 65,74 млн. руб.
Удельная прибыль характеризует сумму дохода, приходящуюся на одну тонну нефти и в результате внедрения мероприятия она выросла на 2982,44 руб.
На основании вышеизложенного, можно сделать вывод о экономиче-ской целесообразности разработки месторождения.
ЗАКЛЮЧЕНИЕ
Хранение нефти и нефтепродуктов в вертикальных стальных цилин-дрических резервуарах связано с испарениями легких фракций углеводоро-дов. Несмотря на применяемые меры, общие потери нефтепродуктов велики и приносят значительные убытки. Это выражается потерями хранимых про-дуктов, осложнением пожарной обстановки в резервуарных парках, ухуд-шением условий труда обслуживающего персонала и загрязнением окружа-ющей среды. Поэтому сохранение количества и качества нефтепродуктов в процессе хранения в резервуарах является актуальной на сегодняшний день.
В ряде стран ужесточение требований охраны окружающей среды и промышленной безопасности заставляет принимать меры по герметизации резервуаров. Выбор типа резервуара в зависимости от испаряемости про-дукта строго регламентируется стандартами. Согласно ГОСТ 1510-84, легкоиспаряющиеся нефтепродукты должны храниться преимущественно в резервуарах с плавающей крышей. В Германии, например, нефтепродукты класса А1 с температурой вспышки ниже 21°С (в том числе сырые нефти и бензины) хранят в резервуарах с плавающей крышей. В результате за рубежом доля резервуаров с плавающим покрытием постоянно увеличи-вается. Одним из таких решений является оснащение действующего резерву-ара со стационарной кровлей внутренним плавающим покрытием, имеющи-ми более низкую стоимость по сравнению с плавающими крышами. Кроме того, резервуар со стационарной кровлей более приемлем для большей ча-сти климатических районов России.
В нашей стране было построено большое количество понтонов под-донного типа из стали с коробами по периметру. Однако большинство этих понтонов потонуло. На магистральных нефтепроводах доля потонувших стальных понтонов приближается к 100%. Потонувший стальной понтон практически не поддается восстановлению.
Как показывает практика, 40 – 60% пожаров на резервуарах проис-ходит при выводе резервуара из эксплуатации (при зачистке, пропарке и т.п.). Поэтому для повышения промышленной безопасности резервуаров необходим понтон, не требующий обслуживания и ремонта, имеющий боль-шой срок службы.
Одним из признанно надежных является конструкция понтона, в которой настил удерживается на поплавках. Понтоны такой конструкции применяются в странах Западной Европы и США с 60-х годов и в настоящее время конструкция сборных понтонов из алюминиевых сплавов для верти-кальных стальных цилиндрических резервуаров стала традиционной.
Строятся легкие сборные понтоны из алюминиевых сплавов для ре-зервуаров объемом от 1000 до 30000 м3. В конструкции понтона использо-ваны наиболее коррозионно-стойкие алюминиевые сплавы отечественного производства.
Все детали понтона устанавливаются через люк диаметром 500 мм.
К достоинствам данной конструкции можно отнести следующие:
• большая плавучесть, регулируемая количеством поплавков;
• легкость и быстрота монтажа;
• малая масса по сравнению со стальными понтонами;
• применение типовых заготовок и узлов для резервуаров различной вместимости;
• легкость восстановления плавучести при потоплении;
• возможность ремонта без применения огневых работ;
• возможность автоматического удаления продукта с настила при любом уровне слива;
• возможность демонтажа для сборки в другом резервуаре.
Похожие материалы
Повышение эффективности разработки Кезского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
lelya.nakonechnyy.92@mail.ru
: 2 ноября 2017
Повышение эффективности разработки Кезского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Дипломный проект исполнен на 132 страницах, использовано 24 таблицы, 17 рисунков, использованных источников - 15.
Кратко охарактеризована геологическая характеристика Кезского месторождения Удмуртской Республики. Произведен ана
1626 руб.
Сбор и подготовка нефти на Вынгапуровском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy_lelya@mail.ru
: 10 ноября 2017
Сбор и подготовка нефти на Вынгапуровском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
На начальном этапе разработки нефтяных месторождений, как прави-ло, добыча нефти происходит из фонтанирующих скважин практически без примеси воды. Однако на каждом месторождении наступает такой период, когда из пласта в
1626 руб.
Нефтекислотный разрыв пласта на Арланском месторождении -Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
lenya.nakonechnyy.92@mail.ru
: 2 ноября 2017
Нефтекислотный разрыв пласта на Арланском месторождении-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Дипломный проект содержит страниц текста, в том числе таблицы и рисунков.
СКВАЖИНА, СИСТЕМА ЗАВОДНЕНИЯ, ИНТЕНСИФИКАЦИЯ, ДОБЫЧА, НЕФТЕОТДАЧА, ВОДОНАСЫЩЕННОСТЬ, ПРИЗАБОЙНАЯ ЗОНА
В данной работе приведена геологическ
1626 руб.
Повышение эффективности работы системы ППД-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Повышение эффективности работы системы ППД-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
В настоящее время в нефтяной промышленности для повышения неф-теотдачи пластов используются мероприятия по поддержанию пластового давления (ППД). В мировой практике наиболее широкое распространение получил метод, основанный на закачивании в пласт воды через на
1626 руб.
Плазменно-импульсное воздействие на нефтяную залежь-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Плазменно-импульсное воздействие на нефтяную залежь-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад
Скважинная плазменно-импульсная электрогидравлическая технология повышения нефтеотдачи пластов месторождений углеводородов, основана на создании резонансных явлениях в продуктивных пластах.
Особенно сложная задача стоит в пр
1626 руб.
Совершенствование технологии очистки нефтяных резервуаров-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy.1992@list.ru
: 10 ноября 2017
Совершенствование технологии очистки нефтяных резервуаров-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
ВВЕДЕНИЕ
История возникновения резервуаров в России связана с развитием Ба-кинской нефтяной промышленности. В 17 в. с увеличением добычи нефти в Баку начали возникать нефтяные склады — земляные резервуары (ямы) в глиняных грунтах. Первый стальной клепаный ре
1626 руб.
Разработка и эксплуатация морских месторождений на Каспийском море-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
nakonechnyy_lelya@mail.ru
: 10 ноября 2017
Разработка и эксплуатация морских месторождений на Каспийском море-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад
Компания «ЛУКОЙЛ» ведет активную деятельность по освоению месторождений российского сектора Каспийского моря. Результатом геологоразведки, проведенной здесь «ЛУКОЙЛом», стало открытие новой нефтегазоносной про
1626 руб.
Пути рационального использования попутного газа-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
leha.se92@mail.ru
: 10 ноября 2017
Пути рационального использования попутного газа-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
Доклад Нусс
В настоящее время в России разрабатывается более 1200 нефтяных и нефтегазоконденсатных месторождений. Вместе с нефтью добывается также попутный нефтяной газ (ПНГ) – ценнейшее сырьё для производства продуктов нефтегазохимии.
По экспертным оценкам уровень
1626 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.