Математические методы принятия решений. Экзамен. Билет №8
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет № 8
Теоретический вопрос. Теорема двойственности
Задача. Решите задачу выпуклого программирования. Дайте интерпретацию двойственным переменным и проинтерпретируйте выполнение условий дополняющей нежесткости. Как изменится оптимальное решение при изменении правых частей ограничений?
Теоретический вопрос. Теорема двойственности
Задача. Решите задачу выпуклого программирования. Дайте интерпретацию двойственным переменным и проинтерпретируйте выполнение условий дополняющей нежесткости. Как изменится оптимальное решение при изменении правых частей ограничений?
Дополнительная информация
Вид работы: Экзамен
Оценка:Удовлетворительно
Дата оценки: 17.10.2014
Рецензия: есть замечания
Игнатова Оксана Александровна
Оценка:Удовлетворительно
Дата оценки: 17.10.2014
Рецензия: есть замечания
Игнатова Оксана Александровна
Похожие материалы
Математические методы принятия решений
jaggy
: 6 апреля 2017
Курсовая работа. 2 вариант
На тему: Многокритериальная оптимизация в принятии решений: постановка задачи, методы решения.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ………………….…………………………………………………….3
1 Теоритические основы многокритериальных задач оптимизации основные подходы к их решению………………………………….…….…………………6
2 Постановка многокритериальной задачи………………….………………..8
2.1 Формулировка задачи векторной оптимизации………..……………..….8
2.2 Парето-оптимальность……………………………………………………...9
2.3 Концепция доминирования по Парето……………….…
400 руб.
Математические методы принятия решений
jaggy
: 6 апреля 2017
Зачет. 6 вариант
Задание 1
Компания решает вопрос о модификации разработанной модели игровой приставки. Если отказаться от модификаций, то можно ожидать следующий уровень продаж при различной цене приставки.
При начальной цене 89$ (и средней за время жизни товара цене в 70$) с вероятностью 75% будет продано 80000 приставок и с вероятностью 25% – только 50000. При начальной цене 79$ (и средней за время жизни товара цене в 62$) продажи с вероятностью 40% могут достигнуть 125000 приставок, и с
650 руб.
Математические методы принятия решений, зачет, билет 9
Fistashka
: 16 октября 2017
Задание 1
Управляющий производственным отделом компании, производящей жидкокристаллические панели для мониторов, анализирует возможности модернизации цеха.
"Дешевый" план предполагает вложение 10 млн. долл. При этом ожидается, что новое оборудование с вероятностью 90% позволит получать 70%-й выход годных панелей и с вероятностью 10% - даже 80%-й выход годных панелей.
"Дорогой" план предполагает вложение 15 млн. долл. При этом более совершенное оборудование позволит иметь 80%-й выход годных пане
400 руб.
Математические методы принятия решений. Зачет. Вариант № 5
Widoms
: 18 марта 2016
Задание 1
Пусть менеджер на предприятии должен решить, вкладывать ли средства в изделие A или в изделие B (он не может сделать и то и другое из-за финансовых ограничений).
Задание 2
Маленькая кондитерская продает выпечку собственного производства. Фирменные торты выпекаются каждое утро и продаются по цене 7 долл. (при себестоимости 3 долл.).
Задание 3
Две фирмы А и В могут осуществлять капиталовложения в четыре объекта. Стратегии фирм: стратегия Аi состоит в финансировании фирмой А
200 руб.
Оптимизация и математические методы принятия решений: Стохастическая оптимизация
tefant
: 31 января 2013
Вариант 4
Тема работы: Стохастическая оптимизация.
Курсовой проект
Ваша работа зачтена с оценкой "хорошо"; причина снижения оценки - сильный "дисбаланс" материала (не рассмотрено примеров, методы изложены исключительно на словах).
300 руб.
Экзамен по дисциплине: "Оптимизация и математические методы принятия решений" семестр 2, билет №10
saharok
: 1 октября 2013
Билет №10
Теоретический вопрос. Критерии оптимальности в задачах выпуклого программирования.
Задача. Решите задачу о диете со следующими данными. Запишите двойственную к ней, покажите выполнение признака оптимальности. Как изменится решение при изменении суточной потребности в элементах?
Продукты Суточная потребность
1 2 3 4
Е 2 6 4 2 12
F 1 5 2 1 7
РР 3 7 4 3 14
Цента продукта 4 6 7 5
69 руб.
Математические методы принятия решений. Курсовая работа. Вариант №9
inwork2
: 18 ноября 2017
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
1. ЭКОНОМИЧЕСКАЯ ТЕОРИЯ ВЗАИМОДЕЙСТВИЯ СУБЪЕКТОВ. 3
2. ТЕОРИЯ ПОВЕДЕНИЯ ПОТРЕБИТЕЛЯ. 4
3. ОПТИМИЗАЦИЯ ПОТРЕБИТЕЛЬСКОГО ВЫБОРА. 9
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 14
200 руб.
Математические методы принятия решений. Контрольная работа. Вариант №9
inwork2
: 18 ноября 2017
3. Решите задачу линейного раскроя со следующими данными. Для комплектации одного изделия необходимо две детали первого типа и одна деталь второго типа. Материал поступает в виде стандартных полос длиной 1 м. Деталь первого типа требует 15 см. материала, а деталь второго типа — 35 см.
В условиях предыдущей задачи, насколько важны для математической постановки данные о комплектности деталей в одном изделии? Как изменится математическая постановка, если понятие «две детали первого типа» заменить о
200 руб.
Другие работы
Теоретическая механика СамГУПС Самара 2020 Задача С1 Рисунок 7 Вариант 0
Z24
: 7 ноября 2025
Равновесие произвольной плоской системы сил (Определение реакций опор твёрдого тела)
Найти реакции опор конструкции, схема которой изображена на рис. С1.0–С1.9. Необходимые исходные данные представлены в таблице С1.
150 руб.
Волоконно-оптические системы передач. Контрольная работа. Вариант 22. СибУТИ.
TheMrAlexey
: 21 мая 2016
Задача 1.
Определить затухание (ослабление), дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов в волоконно-оптической системе с длиной секции L (км), километрическим (погонным) затуханием (ослаблением) a (дБ/км) на длине волны излучения передатчика l0 (мкм), ширине спектра излучения Dl0,5 на уровне половины максимальной мощности излучения. Данные для задачи приведены в таблицах 1.1 и 1.2.
Таблица 1.1
Параметр Предпоследняя цифра пароля 2
Длина секции L, км 91
Таб
50 руб.
Теплотехника КНИТУ Задача ТП-1 Вариант 12
Z24
: 18 января 2026
Определить плотность теплового потока q, передаваемого теплопроводностью:
1) через однослойную плоскую металлическую стенку толщиной δc;
2) через двухслойную плоскую стенку: первая стенка покрыта плоским слоем изоляции толщиной δи.
Температуры внешних поверхностей tc1 и tc2 в обоих случаях одинаковы.
150 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 2.8
Z24
: 14 ноября 2025
Определить избыточное давление ри в точке b, если абсолютное давление на поверхности жидкости в резервуаре равно 0,15 МПа (рис. 2.10). Точка находится на глубине h=3,0 м. Плотность жидкости ρ=900 кг/м³.
120 руб.