Контрольная работа по дисциплине: «Теория вероятностей и математическая статистика». Вариант №02.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Вероятность выхода из строя каждого из 4-х блоков равна 0,8. Найти вероятность разрыва цепи.
2. Изделие, изготовленное на первом станке, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,02, для третьего – 0,025. Четверть всех изделий изготовлены первым станком, половина – вторым, остальные – третьим. Случайно взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено вторым станком?
3. Известно, что в среднем одна опечатка приходится на 50 страниц текста. Вычислить вероятность того, что книга объёмом 100 страниц содержит а) одну опечатка; б) ни одной опечатки.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется:
а) найти дифференциальную функцию f(x) (плотность распределения вероятностей);
б) найти математическое ожидание и дисперсию случайной величины;
в) построить графики интегральной и дифференциальной функций.
5. Известны математическое ожидание a = 9 и среднее квадратичное отклонение s = 5 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (10;14).
2. Изделие, изготовленное на первом станке, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,02, для третьего – 0,025. Четверть всех изделий изготовлены первым станком, половина – вторым, остальные – третьим. Случайно взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено вторым станком?
3. Известно, что в среднем одна опечатка приходится на 50 страниц текста. Вычислить вероятность того, что книга объёмом 100 страниц содержит а) одну опечатка; б) ни одной опечатки.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется:
а) найти дифференциальную функцию f(x) (плотность распределения вероятностей);
б) найти математическое ожидание и дисперсию случайной величины;
в) построить графики интегральной и дифференциальной функций.
5. Известны математическое ожидание a = 9 и среднее квадратичное отклонение s = 5 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (10;14).
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Контрольная работа
Оценка: Зачет
Дата оценки: 11.11.2017
Рецензия:Уважаемый С*
Проверил: Агульник В.И.
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Контрольная работа
Оценка: Зачет
Дата оценки: 11.11.2017
Рецензия:Уважаемый С*
Проверил: Агульник В.И.
Похожие материалы
Контрольная работа по дисциплине: "Теория вероятностей и математическая статистика". Вариант 02.
apexgen
: 15 декабря 2022
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ХОДОК?
Задание 2. Основные теоремы
Две трети всех сообщений передается по первому каналу связи, остальные - по второму. Вероятность искажения при передаче по первому каналу равна 0,01, по второму - 0,04. Какова вероятность искажения произвольно взятого сообщения?
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, заданной рядо
360 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант 02
Учеба "Под ключ"
: 23 августа 2022
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ХОДОК?
Задание 2. Основные теоремы
Две трети всех сообщений передается по первому каналу связи, остальные - по второму. Вероятность искажения при передаче по первому каналу равна 0,01, по второму - 0,04. Какова вероятность искажения произвольно взятого сообщения?
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, заданной рядо
400 руб.
Контрольная работа по дисциплине: «Теория вероятностей и математическая статистика». Вариант №02
KiberPank
: 18 февраля 2020
1. Вероятность выхода из строя каждого из 4-х блоков равна 0,8. Найти вероятность разрыва цепи.
2. Изделие, изготовленное на первом станке, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,02, для третьего – 0,025. Четверть всех изделий изготовлены первым станком, половина – вторым, остальные – третьим. Случайно взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено вторым станком?
3. Известно, что в среднем одна опечатка приходится на
10 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант №02.
teacher-sib
: 26 ноября 2019
Вариант №02
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ХОДОК?
Задание 2. Основные теоремы.
Две трети всех сообщений передается по первому каналу связи, остальные – по второму. Вероятность искажения при передаче по первому каналу равна 0,01, по второму – 0,04. Какова вероятность искажения произвольно взятого сообщения.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины,
500 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
dimajio
: 29 мая 2017
Задачи 10-11. Тема: случайные события
10.7. Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9. Найти вероятность того, что: а) оба стрелка поразят мишень; б) оба стрелка промахнутся; в) только один стрелок поразит мишень; г) хотя бы один из стрелков поразит мишень.
11.7. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие появится не менее 20 и не более 30 раз.
65 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
gukin1
: 3 апреля 2017
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообщ
100 руб.
Контрольная работа по дисциплине: "Теория вероятностей и математическая статистика"
Ivanych
: 19 марта 2017
Вариант №3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один
3.Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2.
200 руб.
Контрольная работа по дисциплине: «Теория вероятностей и математическая статистика»
agent7788w
: 10 февраля 2016
Вариант № 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна
600 руб.
Другие работы
Теплотехника КГАУ 2015 Задача 5 Вариант 54
Z24
: 5 февраля 2026
Определить удельный лучистый тепловой поток q между двумя параллельно расположенными плоскими стенками, имеющими температуру t1 и t2 и степени (коэффициенты) черноты ε1 и ε2, если между ними нет экрана.
Определить q при наличии экрана со степенью (коэффициентом) черноты εэ (с обеих сторон).
180 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 4.26 Вариант б
Z24
: 8 октября 2025
Из напорного бака с избыточным давлением на поверхности рман вода подается в зумпф по нормальной водопроводной трубе диаметром d, длиной l (рис. 4.26). На расстоянии l1 показание манометра равно рман1. В системе установлен пробковый кран с углом закрытия α. Потерями напора при входе в трубу пренебречь. Уровень воды в зумпфе ниже оси трубы на величину h.
Определить напор воды в баке Н и расход Q.
250 руб.
Точность систем автоматического управления
alfFRED
: 6 октября 2013
Точность САУ оценивается в установившемся режиме по величине установившейся ошибки при типовых воздействиях. При анализе точности систем рассматривается установившийся режим, так как текущее значение ошибки резко меняется вследствие наличия переходных процессов и не может быть мерой точности.
10 руб.
Метрология, стандартизация и сертификация. Вариант №2
IT-STUDHELP
: 16 ноября 2021
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля ̄l.
2. Оценку среднего квадратического отклонения (СК
580 руб.