Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзаменационная работа
Оценка:Отлично
Дата оценки: 15.10.2017
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзаменационная работа
Оценка:Отлично
Дата оценки: 15.10.2017
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Похожие материалы
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3
growlist
: 18 мая 2017
Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3.
SibGUTI2
: 20 мая 2016
Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
150 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №3
IT-STUDHELP
: 2 ноября 2019
Билет No3
1. С помощью алгоритма Дейкстры найти кратчайшие расстоя-ния от вершины 0
(нумерация вершин начинается с 0) до всех остальных вершин связного
взвешенного неориентированного гра-фа, имеющего 6 вершин.
Граф задан матрицей смежности, (0 означа-ет, что соответствующей дуги нет).
0 7 2 6 0 5
7 0 1 7 6 3
2 1 0 4 6 2
6 7 4 0 7 3
0 6 6 7 0 2
5 3 2 3 2 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[2×8],M2[8×6],M3[6×3],
M4[3×2],M5[2×7].
390 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Lele911
: 22 мая 2022
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
150 руб.
Другие работы
Термодинамика и теплопередача ПНИПУ 2006 Задача 2 Вариант 84
Z24
: 6 ноября 2025
Произвести термодинамический расчет многоступенчатого поршневого компрессора, производящего G, кг/c сжатого до давления pk воздуха, если предельно допустимое повышение температуры газа в каждой ступени Δt, а сжатие происходит с показателем политропы n.
Состояние воздуха на входе в компрессор: р1=0,1 МПа; t1=27ºC. В промежуточных теплообменниках сжатый воздух охлаждается изобарно до первоначальной температуры t1.
Определить:
— количество ступеней компрессора:
— температуру воздуха пос
600 руб.
Основы техники связи. Зачетная работа
rita_voitenko
: 3 сентября 2014
Билет № 4
для зачета по дисциплине «Основы техники связи»
1. Последовательный колебательный контур. Условие резонанса. Основные понятия и определения
2. Определить ic(0+) – ток в емкости в момент коммутации.
80 руб.
КУРСОВОЙ ПРОЕКТ по дисциплине «Интернет-технологии» Вариант № 2.
freelancer
: 7 августа 2016
Задание:
Используя описанные команды создайте стиль следующего вида:
Для команды <BODY> задайте
• пустое поле сверху и снизу во всем документе
• пустое поле слева - 5em; пустое поле справа - 2em
• цвет фона - светло-серый, цвет текста - черный.
Установите в данном тексте цвет не посещённых гиперссылок - коричневый, посещенных - зеленый, стиль шрифта - Arial.
Абзацы: на белом фоне. У первого абзаца - вертикальная одинарная красная черта слева; у второго абзаца - вертикальная двойная синяя ч
80 руб.
Пути реформирования налоговой системы Российской Федерации
Aronitue9
: 26 октября 2013
ВВЕДЕНИЕ
ГЛАВА 1. АНАЛИЗ ДЕЯТЕЛЬНОСТИ ИНСПЕКЦИИ ФЕДЕРАЛЬНОЙ НАЛОГОВОЙ СЛУЖБЫ ПО Г. ЙОШКАР-ОЛА
1.1. Общая харакетристика Инспекции Федеральной налоговой службы по г. Йошкар-Ола
1.2. Экономические показатели деятельности ИФНС РФ по г. Йошкар-Ола
1.3. Оценка налоговых поступлений по ИФНС РФ по г. Йошкар-Ола
ГЛАВА 2. ПУТИ РЕФОРМИРОВАНИЯ НАЛОГОВОЙ СИСТЕМЫ РОССИЙСКОЙ ФЕДЕРАЦИИ
2.1. Эффективность реализации налоговой политики в России
2.2. Основные направления реформирования налоговой системы
2
19 руб.