Теория сложности вычислительных процессов и структур. Экзамен. Билет № 3

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Экзамен.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Билет №3
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.

0 0 24 0 45
0 0 32 25 44
24 32 0 0 19
0 25 0 0 50
45 44 19 50 0

2. Оптимальным образом расставить скобки при перемножении матриц
М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзаменационная работа
Оценка:Отлично
Дата оценки: 15.10.2017
Рецензия:Уважаемый,

Галкина Марина Юрьевна
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 0 0 24 0 45 0 0 32 25 44 24 32 0 0 19 0 25 0 0 50 45 44 19 50 0 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User growlist : 18 мая 2017
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3 promo
Теория сложности вычислительных процессов и структур. Экзамен. Билет №3.
Билет №3 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 4 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[2x5], M2[5x7], M3[7x3], М4[3x8], M5[8x4]
User SibGUTI2 : 20 мая 2016
150 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №3
Билет No3 1. С помощью алгоритма Дейкстры найти кратчайшие расстоя-ния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного гра-фа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означа-ет, что соответствующей дуги нет). 0 7 2 6 0 5 7 0 1 7 6 3 2 1 0 4 6 2 6 7 4 0 7 3 0 6 6 7 0 2 5 3 2 3 2 0 2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[2×8],M2[8×6],M3[6×3], M4[3×2],M5[2×7].
User IT-STUDHELP : 2 ноября 2019
390 руб.
promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Билет 7 С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). а b c d E f 0 0 4 0 0 5 3 1 4 0 7 2 4 4 2 0 7 0 6 1 5 3 0 2 6 0 4 7 4 5 4 1 4 0 3 5 3 4 5 7 3 0
User Светлана59 : 31 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
User Lele911 : 22 мая 2022
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
ДБН Д.2.4-17-2000 Ресурсные элементные сметные нормы на ремонтно-строительные работы. Сборник 17. Электромонтажные работы
Настоящий сборник содержит ресурсные элементные сметные нормы на ремонтно-строительные работы, необходимые для определения потребности в ресурсах при выполнении электромонтажных работ.
User evelin : 3 июля 2013
5 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 17 Вариант 3
Воздух, имея давление по манометру р1 и температуру t1, вытекает в атмосферу через сопло Лаваля. Массовый расход воздуха G, кг/c. Определить теоретическую скорость истечения и основные размеры сопла (изобразить схему сопла в масштабе). Угол конуса расширяющейся части сопла принять равным 10º. Барометрическое давление В=750 мм рт. ст. Определить также располагаемую мощность струи при истечении. Истечение считать адиабатным, скорость воздуха перед соплом и потери на трение не учитывать.
User Z24 : 10 ноября 2025
220 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 17 Вариант 3
Аномалії нирок і сечовивідних шляхів чоловічих статевих органів (крипторхізм, ектопія). Клініка, діагностика, лікування
Аномалії розвитку нирок порівняно з іншими вадами органів сечостатевої системи становлять 8...11%. Аномалії нирок можна поділити на аномалії кількості, величини, положення, взаємовідношення і будови. До аномалій кількості нирок належать однобічна і двобічна агенезія та аплазія, подвоєння нирки, додаткова нирка. Найчастіше (70%) спостерігається подвоєння ниркових мисок і сечоводів. Аплазія нирки — відсутність її як розвиненого органа, агенезія — відсутність навіть зачатків ниркової тканини. Кліні
User DocentMark : 25 января 2013
Цифро-аналоговые преобразователи
Содержание Введение 1 1. Описание К1108ПА2 3 2. Описание AD558 7 3. Функциональная схема AD558 14 4. Схема включения AD558 16 5. Схема с заданными параметрами 18 Список литературы 19
User ilya01071980 : 7 июня 2016
350 руб.
up Наверх