Теория сложности вычислительных процессов и структур. Экзамен. Билет №7.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №7
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 4 0 0 5 3
4 0 7 2 4 4
0 7 0 6 1 5
0 2 6 0 4 7
5 4 1 4 0 3
3 4 5 7 3 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
М1[4x8], М2[8x4], М3[4x5], М4[5x3], М5[3x6]
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 4 0 0 5 3
4 0 7 2 4 4
0 7 0 6 1 5
0 2 6 0 4 7
5 4 1 4 0 3
3 4 5 7 3 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
М1[4x8], М2[8x4], М3[4x5], М4[5x3], М5[3x6]
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Оценка:Отлично
Дата оценки: 28.01.2019
Рецензия:замечаний нет.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Оценка:Отлично
Дата оценки: 28.01.2019
Рецензия:замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
tpogih
: 2 мая 2015
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 3 7 8
2 0 4 6 12
3 4 0 16 17
7 6 16 0 18
8 12 17 18 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7
рулетка
: 25 января 2015
Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин...
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
200 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
tefant
: 4 июля 2013
Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
299 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №7.
teacher-sib
: 31 октября 2017
Билет №7
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
Матрица:
2. Оптимальным образом расставить скобки при перемножении матриц
M1[8 3], M2[3 5], M3[5 9], M4[9 2], M5[2 4]
110 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Другие работы
Гидравлика ИжГТУ 2007 Задача 2.2 Вариант 7
Z24
: 24 октября 2025
Вода с плотностью ρ=1000 кг/м³ вытесняется из сосуда сжатым воздухом под избыточным давлением роизб; затем она проходит по трубе с внутренним диаметром D и выбрасывается в атмосферу вертикально через отверстие диаметром d, образуя фонтан.
Учесть только путевые потери в трубе. Коэффициент сопротивления трения равен λ.
При движении струи в воздухе гидравлическими потерями пренебречь.
Величина атмосферного давления ра=1,013·105 Па.
Найти:
а) высоту фонтана Нф;
б) расход вытекающей
250 руб.
Контрольная работа по дисциплине: Компьютерное моделирование. Вариант 33
Roma967
: 28 марта 2024
1. Исходные данные
Вариант задания:
№ вар: 33
Скорость Rb, Мбит/с: 1.4
Модуляция: 256-QAM; 64-QAM
ROF: 0.35; 0.95
Выполнение заданного варианта работы проводится в соответствии с разделом порядок выполнения работы задания на контрольную работу работы.
2. Пронаблюдать и привести скриншоты вектограмм (с заполненной легендой) на выходе модулятора для заданных видов модуляции. По вектограммам определить и записать расстояние между соседними точками созвездий. По полученным расстояниям сделать выв
1400 руб.
Разработка месторождений природного газа
GnobYTEL
: 3 сентября 2012
ВВЕДЕНИЕ
1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ 4
2. КРАТКАЯ ГЕОЛОГО-ПРОМЫСЛОВАЯ ХАРАКТЕРИСТИКА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КОЛЛЕКТОРОВ И ПЛАСТОВЫХ ФЛЮИДОВ ЯМБУРГСКОГО ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 6
2.1. Краткая литолого-стратиграфическая характеристика разреза 6
2.2. Тектоника 6
2.3. Cеноманская залежь 7
2.4. Неокомские залежи 8
3. СОСТОЯНИЕ РАЗРАБОТКИ ЯМБУРГСКОГО ГКМ 10
3.1 Сеноманская залежь. 10
3.2. Неокомские залежи 14
4. ЦЕЛИ И ЗАДАЧИ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ ГАЗОВЫХ СКВАЖИН НА УСТА
20 руб.
Преддипломная практика.Производственная практика(Интернет-маркетинг,Синергия)
alexey2021
: 31 октября 2023
Преддипломная практика.Производственная практика(Интернет-маркетинг,Синергия)
Год написание 01.06.2023 год.
1000 руб.
Комментарии (1)