Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №1.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Kr.cs
material.view.file_icon Kr.exe
material.view.file_icon System.ValueTuple.dll
material.view.file_icon КР.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!


Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
  Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
 Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2.
 Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
 Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.

Вариант 1 Z(x_1,x_2 )=5*x_1+x_2→max
{█(4*x_1+x_2≥9@〖3*x〗_1+〖2*x〗_2≥13@2*x_1+5*x_2≥16@x_1;x_2≥0)
Вопросы: 2,10,12,16

Дополнительная информация

Комментарии: Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Курсовая работа
Оценка:Хорошо
Дата оценки: 01.01.2019
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №0.
Решение задачи линейного программирования, теория двойственности Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты; файл с исходным текстом программы (программу можно писать на любом языке программирования). Задание на курсовую работу 1 Перейти к канонической форме з
User Алексей134 : 5 марта 2021
100 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №7.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 27 декабря 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Задание 1. Перейти к канонической форме задачи линейного программирования. 2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. 3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2. 4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия. 5. Ответить на вопросы
User Михаил18 : 26 сентября 2019
100 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №3.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №4.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №2.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 29 мая 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №6.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 3 мая 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №9.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 18 апреля 2019
139 руб.
Социально-педагогические особенности отношения к браку и предбрачным отношениям современной молодежи
СОДЕРЖАНИЕ Введение Глава 1. Подготовка молодежи к семейной жизни как социально-педагогическая проблема 1.1 Формирование гендерной культуры как аспект подготовки молодежи к семейной жизни 1.2 Семья как фактор подготовки к семейной жизни (брачно-семейным отношениям) 1.3 Анализ ролевых отношений как основа изучения семьи Глава 2. Характеристика отношений молодежи к будущей семейной жизни 2.1 Возрастные особенности подготовки к семейной жизни 2.2 Изучение социально-педагогических собенностей отноше
User Elfa254 : 6 февраля 2014
15 руб.
Цифровые системы распределения сообщений. Курсовая работа. Вариант №6
Расчет объема оборудования цифровой системы коммутации типа DX-200 Исходные данные: Абоненты квартирного сектора: • включенные в местные модули 4500 • включенные в удаленные модули 8000 Абоненты делового сектора: • включенные в местные модули 3200 • включенные в удаленные модули 5000 Таксофоны местной связи 550 Таксофоны междугородней связи 80 Кабины переговорных пунктов 58 Среднее количество потоков Е1, связывающих каждый БАИ с коммутационным полем ГИ 15 Тип РАТС-1 S-12 Значение нагрузки н
User salut135 : 29 июня 2013
170 руб.
Контрольная работапо дисциплине «Основы передачи дискретных сообщений».Вариант №9
Вариант 09 Задача 1 Для дискретного симметричного канала без памяти вероятность ошибочного приема элемента равна . Рассчитать вероятности поражения кодовой комбинации длина n = 22, ошибкой кратности Задача 2 Определить вероятность неправильного приема кодовой комбинации Рнп , если для передачи используется код с кодовым расстоянием d0 = 6 в режиме исправления ошибок. Длина кодовой комбинации n = 22, Р(t,n) из первой задачи. Задача 3 Определить скорость передачи информации с решающей обратно
User loly1414 : 4 марта 2014
150 руб.
Социальная адаптация людей с ограниченными возможностями благодаря деятельности в областях науки и искусства
Введение 1. Законодательная основа социальной адаптации людей с ограниченными возможностями 2. Люди с ограниченными возможностями в мире искусства и науки 2.1 Слепые музыканты 2.1.1 Рэй Чарльз 2.1.2 АндреаБочелли 2.1.3 ДжеффХейли 2.1.4 Диана Гурцкая 2.1.5 СтивиУандер 2.1.6 Вересай Остап Никитич 2.1.7 Фридрих Людвиг Дюлон 2.1.8 Алексей Дмитриевич Жилин 2.1.9 Хоакин РодригоВидре 2.1.10 Марианна Кирхгесснер 2.1.11 Света Губанова (слепая девушка) 2.1.12 Конрад Пауман 2.2 Музыканты с нарушенным опорн
User Lokard : 7 февраля 2014
10 руб.
up Наверх