Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №2.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Kr.cs
material.view.file_icon Kr.exe
material.view.file_icon System.ValueTuple.dll
material.view.file_icon КР.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!


Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
  Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
 Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2.
 Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
 Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Вариант 2 Z(x_1,x_2 )=11*x_1+x_2→max
{█(5*x_1+x_2≥12@〖5*x〗_1+4*x_2≥33@2*x_1+5*x_2≥20@x_1;x_2≥0)
Вопросы: 3,8,13,15

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Курсовая работа
Оценка:Хорошо
Дата оценки: 01.01.2019
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №0.
Решение задачи линейного программирования, теория двойственности Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты; файл с исходным текстом программы (программу можно писать на любом языке программирования). Задание на курсовую работу 1 Перейти к канонической форме з
User Алексей134 : 5 марта 2021
100 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №7.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 27 декабря 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Задание 1. Перейти к канонической форме задачи линейного программирования. 2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. 3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2. 4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия. 5. Ответить на вопросы
User Михаил18 : 26 сентября 2019
100 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №3.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №4.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №6.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 3 мая 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №1.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 18 апреля 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №9.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 18 апреля 2019
139 руб.
Лабораторные работы 1-3 по дисциплине: Моделирование. Вариант №8
ЛАБОРАТОРНАЯ РАБОТА No1 «ОСНОВЫ РАБОТЫ В ПАКЕТЕ MATLAB. МОДЕЛИРОВАНИЕ ПРОСТЫХ РАДИОСИГНАЛОВ» Цели работы: 1. Научиться работать с командным окном MATLAB. 2. Научиться создавать с диапазоны данных и вычислять функции от них. 3. Научиться работать с m-файлами. 4. Изучение технологии построения двумерных графиков. 5. Построение модели модуляции аналоговых радиосигналов. Исходные данные для 8 варианта: W1/2π = 1,4; W2/2π = 0,7; W0/2π = 10. ============================================= ЛАБО
User IT-STUDHELP : 10 октября 2023
1000 руб.
Лабораторные работы 1-3 по дисциплине: Моделирование. Вариант №8 promo
Социальная работа как профессиональная деятельность
Как профессиональная деятельность социальная работа общего профиля охватывает три широкие сферы: социальная терапия на индивидуально личностном и семейном уровнях с целью социальной адаптации и реабилитации индивида и разрешения конфликтных ситуаций в контексте окружающей его среды; социальная работа с группой, причем группы могут классифицироваться: по возрасту (детские, молодежные или группы престарелых граждан), по полу, по интересам или схожим проблемам (конфессиональные, объединения одиноки
User evelin : 28 апреля 2013
10 руб.
Экономическая оценка инвестиций. Тест.
Тест 1. Что представляют собой инвестиции? а) вложение денежных средств, с целью получения прибыли; б) вложение капитала во всех его формах с целью получения прибыли, а также достижения другого экономического или неэкономического эффекта; в) вложение основных средств, с целью получения прибыли или любого другого экономического эффекта.
User Amor : 5 октября 2013
265 руб.
promo
Контрольная работа по физике за 2 семестр. 1 вариант
1. Источник ЭДС 30В имеет внутреннее сопротивление r=10 Ом. Сколько таких источников ЭДС надо соединить последовательно в батарею, чтобы на лампочке с сопротивлением R = 400 Ом, подсоединенной к клеммам этой батареи, выделялась мощность Р=100Вт? 2. Энергия тока в замкнутом проводящем контуре с индуктивностью L=0,6 Гн растет со временем t по закону W t6 , где 1,2Дж / с6 . В какой момент времени t величина ЭДС самоиндукции в этом контуре станет равной с 14,4В? 3. В отраженном вертикально вверх св
User Liya38 : 30 июля 2014
50 руб.
up Наверх