Вычислительная математика. Лабораторные работы №1-3. Вариант 0 (фамилия на гласную).
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Лабораторная работа No2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N, N– последняя цифра пароля.
Лабораторная работа No3. Численное дифференцирование
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Лабораторная работа No2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N, N– последняя цифра пароля.
Лабораторная работа No3. Численное дифференцирование
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.
Дополнительная информация
февраль 2019, зачтено без замечаний, фамилия на гласную
Похожие материалы
Вычислительная математика. Лабораторная работа №1. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
108 руб.
Лабораторная работа № 1. Вычислительная математика. Вариант № 0
Despite
: 14 мая 2015
Лабораторная работа №1. Интерполяция: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
60 руб.
Вычислительная математика. Лабораторные работы №№1-3. Вариант №0
bananchik
: 30 апреля 2020
Лабораторная работа No 1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
345 руб.
Вычислительная математика. Лабораторные работы 1-5. Вариант 0
Алексей134
: 24 марта 2020
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функц
150 руб.
Вычислительная математика. Лабораторные работы №1-3. Вариант 0.
SNF
: 6 июня 2019
Лабораторная работа No 1. Линейная интерполяция.
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему о
702 руб.
Лабораторные работ №№1-3 вычислительная математика. Вариант 0. СИБГУТИ ДО
dezoway
: 17 сентября 2023
В архиве содержится 3 лабораторных работы, выполненные на языке программирования Python, решения "вручную" выполнены в Word. Краткое описание заданий:
Лаб 1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Лаб 2. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной б
350 руб.
Вычислительная математика. Лабораторные работы №№1, 2, 3. Вариант 0.
serg04
: 8 июля 2019
Лабораторная работа № 1. Линейная интерполяция.
Лабораторная работа № 2. Приближенное решение систем линейных уравнений.
Лабораторная работа № 3. Численное дифференцирование
Июль, 2019. Зачтено. Вариант 0, фамилия на гласную
400 руб.
Вычислительная математика. Вариант 0.
bananchik
: 31 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
235 руб.
Другие работы
Алгебра и геометрия. 1 семестр. Зачёт. Билет №9.
58197
: 30 января 2012
Билет №9.
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора .
10 руб.
Общее руководство качеством маслоу, абрахам харольд, дуглас макгрегор. показатели качества продукта
АЛЕКСАНДР4
: 24 сентября 2014
ВВЕДЕНИЕ
1 МАСЛОУ, АБРАХАМ ХАРОЛЬД
2 ДУГЛАС МАКГРЕГОР
3 ПОКАЗАТЕЛИ КАЧЕСТВА ПРОДУКТА
4 ОБЩЕЕ РУКОВОДСТВО КАЧЕСТВОМ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
100 руб.
Структуры и алгоритмы обработки данных (2 часть). Лабораторная работа №3
GTV8
: 10 сентября 2012
Вариант: №7
1. Разработать процедуру построения АВЛ-дерева.
2. Вычислить среднюю высоту АВЛ-дерева для n=10, 50, 100, 200, 400 (n -количество вершин в дереве) и заполнить таблицу следующего вида. Проанализировать полученные результаты, сравнить их с теоретическими оценками и результатами из лабораторной работы 1.
200 руб.
Шпаргалкаі з курсу: Системи комутації в електрозв'язку при вступі в КПІ
DocentMark
: 8 октября 2012
Розглядаються такі питання:
Коротка історія створення ЦСК. Визначення системи телекомунікацій, лінійного тракту системи передачі, каналу передачі. Поняття одно координатної і багатокоординатної комутації. Принципи комутації.
Аналоговий, дискретний по рівню (за часом), цифровий сигнали. Розпізнавання двійкових сигналів. Кодування двійкового сигналу з використанням коду HDB3.
Імпульсно-кодова модуляція. Дискретизація аналогового сигналу за часом. Квантування сигналу. Компандування (еспандуван
20 руб.