Вычислительная математика. Курсовая работа (2019). Вариант 9.
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 9
,
где k – наименьший положительный корень уравнения
Вопросы для защиты: 5, 6, 10, 14.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 9
,
где k – наименьший положительный корень уравнения
Вопросы для защиты: 5, 6, 10, 14.
Дополнительная информация
Фамилия на согласную, имя на согласную. Программа на Паскале.
Сдавалась в мае 2019, зачтено без замечаний. Галкина М.Ю.
Сдавалась в мае 2019, зачтено без замечаний. Галкина М.Ю.
Похожие материалы
Вычислительная математика. Курсовая работа, 2019. Вариант 0.
nik200511
: 23 января 2020
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методо
194 руб.
Вычислительная математика. Курсовая работа (2019). Вариант 0.
nik200511
: 6 июня 2019
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам
193 руб.
Вычислительная математика. Курсовая работа. Вариант №9
nik200511
: 18 декабря 2013
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений
147 руб.
Вычислительная математика. Курсовая работа. Вариант № 9
TechUser
: 29 октября 2013
Тема работы: Создание программы для определения количества теплоты, выделяющегося на единичном сопротивлении за единицу времени
ВВЕДЕНИЕ 3
1. ЗАДАНИЕ 4
2. ПОСТАНОВКА ЗАДАЧИ 5
2.1. Метод Рунге-Кутта для численного решения дифференциальных уравнений 5
2.1.1. Задача Коши 5
2.1.2. Описание метода 5
2.2. Метод линейной интерполяции 6
2.2.1. Общие сведения об интерполировании 6
2.2.2. Описание метода 7
2.3. Метод Симпсона для численного интегрирования 8
2.3.1. Общие сведения о численном интегрировани
100 руб.
Курсовая работа. Вычислительная математика. Вариант № 9
tefant
: 5 февраля 2013
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для
300 руб.
Курсовая работа. Вычислительная математика. Вариант № 9
russkih1984
: 3 февраля 2013
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений
400 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №9
teacher-sib
: 11 марта 2019
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методо
600 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №9.
ДО Сибгути
: 11 сентября 2016
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значени
150 руб.
Другие работы
Теории мотивации, их взаимосвязь и практическое применение на примере магазина
DocentMark
: 25 ноября 2012
Введение
Очень часто встречаешься с расхожим представлением людей, что изучение теории менеджмента – пустая трата времени. Конечно же опытный руководитель может без труда находить правильные решения и выходы из любой ситуации. Но какой ценой достигается такая виртуозность? Если у руководителя не было соответствующего образования в области менеджмента, то, в основном, методом познания управленческой деятельности был метод проб и ошибок. Применение этого метода в работе с людьми недопустимо, так к
10 руб.
«Институции Гая» как источник права. Эссе. Римское право
IVANOVA
: 9 февраля 2018
«Институции Гая» как источник права
Прежде, чем говорить об институциях Гая, я бы хотел остановиться на самих источниках римского права. В юридической и историко-правовой литературе применительно к римскому праву термин «источник права» употребляется в различных значениях, а именно: 1) как источник содержания правовых норм, 2) как способ (форма) образования норм права, 3)как источник познания права.
120 руб.
Многоканальные телекоммуникационные системы, Контрольная работа №2, Вариант № 01, 21, 31, 41, 51, и тд. (новые задания)
Александр495
: 2 ноября 2016
Задача 1
На входе канала ЦСП уровень максимальной мощности сигнала ТЧ равен рmax=+20дБ. Уровень средней мощности этого сигнала рср=-15 дБ. Какой должна быть разрядность кодовой группы для обеспечения защищенности от шумов квантования, не менее 70 дБ? (квантование равномерное).
Задача 2.
Определить частоту дискретизации для сигнала, спектр которого (0,05 ̧4,5) кГц, при использовании ФНЧ на приеме с относительной шириной полосы расфильтровки d=0,670.
Задача 3.
Рассчитать tп.СС, для ЦСП ИКМ-15, ес
100 руб.
Менеджмент. 2 задания.
studypro2
: 20 апреля 2017
Задание 1 Оцените справедливость следующих высказываний
1. В центре внимания бухгалтерской модели анализа компании находится показатель «экономическая прибыль», который отражает превышение дохода не только над фактическими, но и над альтернативными затратами.
а) верно б) неверно
2. Использование модели управления стоимостью способствует усилению прозрачности деятельности корпорации.
а) верно б) неверно
3. Поток свобо
500 руб.