Вычислительная математика. Лабораторные работы 1-5. Вариант 0
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,1⁄429).
Лабораторная работа No2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Лабораторная работа No3.Решение нелинейных уравнений
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках
3. Выводит значения xi (i = 0,1,1⁄4 20)., приближенные и точные значения в точках xi.
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, ,
N – последняя цифра пароля.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,1⁄429).
Лабораторная работа No2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,1⁄4 ). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Лабораторная работа No3.Решение нелинейных уравнений
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Лабораторная работа No4. Численное дифференцирование
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках
3. Выводит значения xi (i = 0,1,1⁄4 20)., приближенные и точные значения в точках xi.
Лабораторная работа No5. Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ), при этом, ,
N – последняя цифра пароля.
Дополнительная информация
Комментарии: Все работы зачтены
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 21.10.2017
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа
Оценка:Зачет
Дата оценки: 21.10.2017
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Вычислительная математика. Лабораторная работа №1. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
108 руб.
Лабораторная работа № 1. Вычислительная математика. Вариант № 0
Despite
: 14 мая 2015
Лабораторная работа №1. Интерполяция: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
60 руб.
Вычислительная математика. Лабораторные работы №№1-3. Вариант №0
bananchik
: 30 апреля 2020
Лабораторная работа No 1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
345 руб.
Вычислительная математика. Лабораторные работы №1-3. Вариант 0.
SNF
: 6 июня 2019
Лабораторная работа No 1. Линейная интерполяция.
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему о
702 руб.
Лабораторные работ №№1-3 вычислительная математика. Вариант 0. СИБГУТИ ДО
dezoway
: 17 сентября 2023
В архиве содержится 3 лабораторных работы, выполненные на языке программирования Python, решения "вручную" выполнены в Word. Краткое описание заданий:
Лаб 1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Лаб 2. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной б
350 руб.
Вычислительная математика. Лабораторные работы №№1, 2, 3. Вариант 0.
serg04
: 8 июля 2019
Лабораторная работа № 1. Линейная интерполяция.
Лабораторная работа № 2. Приближенное решение систем линейных уравнений.
Лабораторная работа № 3. Численное дифференцирование
Июль, 2019. Зачтено. Вариант 0, фамилия на гласную
400 руб.
Вычислительная математика. Вариант 0.
bananchik
: 31 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
235 руб.
Вычислительная математика. Лабораторные работы № 1-3. Вариант 0 (фамилия на согласную).
nik200511
: 23 января 2020
Лабораторная работа No 1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение ф
344 руб.
Другие работы
Теоретическая механика СамГУПС Самара 2020 Задача К1 Рисунок 4 Вариант 0
Z24
: 8 ноября 2025
Кинематика плоских механизмов
Плоский кривошипно-шатунный механизм связан с системой зубчатых колес, насаженных на неподвижные оси, которые приводятся в движение ведущим звеном (зубчатая рейка – схема К1.0; рукоятка – схема К1.1; груз на нити – схема К1.2 и т. д.). Рукоятка О1А и кривошип О2С жестко связаны с соответствующими колесами. Длина кривошипа О2С = L1, шатуна CD = L2.
Схемы механизмов приведены на рис. К1.0 – К1.9, а размеры и уравнения движения точки А ведущего звена S = f (t) –
600 руб.
Растения и животные – индикаторы загрязнения окружающей среды
alfFRED
: 20 марта 2013
Введение
В последнее время весьма актуальными являются наблюдения за изменениями состояния окружающей среды, вызванными антропогенными причинами. Система этих наблюдений и прогнозов составляет суть экологического мониторинга. В этих целях все чаще применяется и используется достаточно эффективный и недорогой способ мониторинга среды – биоиндикация, т.е. использование живых организмов для оценки состояния окружающей среды.
Последствия загрязнения окружающей среды отражаются на внешнем виде растен
5 руб.
Расчет защиты от электромагнитных полей и 6 теоретических вопросов.
ostah
: 5 февраля 2015
Условие задачи.
Для безопасной эксплуатации оборудования с электромагнитными полями следует: рассчитать границу зон индукции и излучения; определить безопасное расстояние до источника излучения; вычислить напряжённость электрического и электромагнитного полей или плотность потока энергии на заданном расстоянии от источника и сравнить результат с нормативными данными; рассчитать толщину защитного экрана; выбрать средства индивидуальной защиты. Исходные данные приведены в таблице.
111 руб.
Отчет о производственной практике на ОАО КМЗ
ded6442
: 28 июля 2010
СОДЕРЖАНИЕ
Введение
Структура производства
Основные виды продукции
Краткая характеристика производства ОАО КМЗ
Описание технологического процесса изготовления детали 691-58-42
Литература
Во время ознакомительной практики, проходившей на ОАО “Курганмашзавод”, необходимо было изучить структуру промышленного предприятия, задачи, выполняемые основными и вспомогательными цехами.
В процессе практики необходимо было ознакомиться с различными видами производств и изучить технологические процессы изгот