Высшая математика (часть 2) Вариант:4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
Вариант 4. y ́=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Вариант 4.∑_(n=1)^∞▒((〖x-1)〗^n)/(n+1)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
Вариант 4.∫_0^(0,5)▒〖xln〖(1+x〗^3)dx〗
Задание 5. Линии и области в комплексной плоскости
По заданным условиям, построить область в комплексной плоскости.
Вариант 4.{█(|Rez|≤1@-π⁄(4≤argz≤π)@-1≤Imz≤2)
Задание 6. Функции комплексного переменного
Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
Вариант4.√(6&1-i)
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
Вариант 4. y ́=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Вариант 4.∑_(n=1)^∞▒((〖x-1)〗^n)/(n+1)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
Вариант 4.∫_0^(0,5)▒〖xln〖(1+x〗^3)dx〗
Задание 5. Линии и области в комплексной плоскости
По заданным условиям, построить область в комплексной плоскости.
Вариант 4.{█(|Rez|≤1@-π⁄(4≤argz≤π)@-1≤Imz≤2)
Задание 6. Функции комплексного переменного
Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
Вариант4.√(6&1-i)
Дополнительная информация
Сибирский Государственный Университет Телекоммуникаций и Информатики 2020г Работа зачтена Проверил: Храмова Татьяна Викторовна
Похожие материалы
Высшая математика (часть 2)
Dirol340
: 11 декабря 2022
1. Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
500 руб.
Высшая математика (часть 2-я).
IT-STUDHELP
: 6 февраля 2022
Онлайн-Тест по дисциплине:
Вопрос №1
Вычислить Ответ при необходимости округлите до тысячных.
0,067
0,315
0.555
0,417
Вопрос №2
Найдите значение выражения
Вопрос №3
Для вычисления значений функции при малых значениях x используется формула ...
Вопрос №4
Найдите с точностью до 0,001.
Вопрос №5
Сколько слагаемых ряда Маклорена для функции достаточно просуммировать для того, чтобы вычислить значение с точностью до 0,001?
1
2
3
4
Вопрос №6
Уравн
700 руб.
Высшая математика (часть 2)
aker
: 10 декабря 2019
Задание 1. Кратные интегралы
Задание к разделу 6,п. 6.5.
Однородная пластина имеет форма четырехугольника(см.рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения.
Задание к разделу 7,п. 7.2.
Найти общее решение дифференциального уравнения.
....
Задание 6. Функции комплексного переменного.
Задание к разделу 9, п. 9.2.
Вычислить значение функции комплексного переменного, результат представить в алгебраиче
100 руб.
Высшая математика часть 2 вариант 4
batruha
: 17 апреля 2022
1. Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2. Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
3. Задание к разделу 8, п. 8.4.
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
4. Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряд
100 руб.
"Высшая математика (часть 2-я)". Вариант №3
Inquisitor
: 27 января 2022
1.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины. рис 1
2.Дифференциальные уравнения
3.Найти область сходимости степенного ряда.
4.Приближенные вычисления с помощью разложения функции в ряд
5.Линии и области в комплексной плоскости
6.Функции комплексного переменного
Зачет,Существенных замечаний нет. Успехов в дальнейшем обучении! Храмова Татьяна Викторовна декабрь 2021
200 руб.
Высшая математика (часть 2-я). Вариант №6
IT-STUDHELP
: 30 декабря 2021
Вариант 6
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x-2)^n/(2n)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0.001 з
570 руб.
Высшая математика (часть 2-я), вариант №6
mixalkina94
: 27 декабря 2021
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x-2)^n/(2n)!
и т д
250 руб.
Высшая математика (часть 2-я). Вариант №4
Fockus
: 5 июля 2021
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
y^'=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒〖(x-1)〗^n/(n+1)!
Задание 4. Пр
100 руб.
Другие работы
Лабораторная работа № 2 Теория сложностей вычислительных процессов и структур. Вариант 0
Despite
: 14 мая 2015
Лабораторная работа № 2
Графы. Поиск остова минимального веса.
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 7 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 0
60 руб.
Экзаменационная работа по дисциплине: Государственные и муниципальные финансы. Билет №5
Учеба "Под ключ"
: 18 марта 2017
Билет №5
Вопрос (дайте письменный развернутый ответ)
Какие организации осуществляют муниципальный контроль в бюджетной сфере? Назовите их основные функции.
Задача
В таблице приведен бюджет государства.
1. Чему равна общая сумма неналоговых доходов?
2. Какую долю в доходах государства составляют неналоговые доходы?
3. Чему равен дефицит (профицит) бюджета?
Доходы Млрд. руб. Расходы Млрд. руб.
Налог на прибыль 40 Государственное управление 30
Подоходный налог 40 Национальная оборона 45
Налог на д
300 руб.
5 руб.
Инженерная графика. Упражнение №46. Вариант №16
Чертежи
: 14 декабря 2019
Все выполнено в программе КОМПАС 3D v16.
Миронов Б.Г., Миронова Р.С., Пяткина Д.А., Пузиков А.А. - Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере.
Упражнение №46. Вариант №16.
Тема: Сечения.
Задание: Начертить главный вид вала, взяв направление взгляда по стрелке А. Выполнить три сечения. Сечение плоскостью А расположить на продолжении следа секущей плоскости, сечение плоскостью Б – на свободном месте чертежа, сечение плоскостью В – в проекционной связи.
60 руб.