Высшая математика.(часть 2-я) Контрольная работа. Вариант №4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1)Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2)Найти общее решение дифференциального уравнения:
3)Найти область сходимости степенного ряда.
4)Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
5)По заданным условиям, построить область в комплексной плоскости.
6)Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
√(6&1-i)
2)Найти общее решение дифференциального уравнения:
3)Найти область сходимости степенного ряда.
4)Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
5)По заданным условиям, построить область в комплексной плоскости.
6)Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
√(6&1-i)
Дополнительная информация
Оценка: ЗАЧЕТ
Помогу с другими работами. Вопросы оставляйте в личном сообщении на этом сайте.
Помогу с другими работами. Вопросы оставляйте в личном сообщении на этом сайте.
Похожие материалы
Высшая математика (часть 2). Контрольная работа. Вариант №4
moonlight1
: 18 марта 2020
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции
100 руб.
Контрольная работа. Высшая математика.(часть 2) Вариант 4
DELSTER
: 6 января 2020
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения: y^'=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Найти область сходимости степенного ряда
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0,001 значение определённого интеграла, р
250 руб.
Высшая математика часть 2 вариант 4
batruha
: 17 апреля 2022
1. Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2. Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
3. Задание к разделу 8, п. 8.4.
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
4. Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряд
100 руб.
Высшая математика (часть 2-я). Вариант №4
Fockus
: 5 июля 2021
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
y^'=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒〖(x-1)〗^n/(n+1)!
Задание 4. Пр
100 руб.
Высшая математика (часть 2) Вариант:4
lotos15
: 17 апреля 2020
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
Вариант 4. y ́=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Вариант 4.∑_(n=1)^∞▒((〖x-1)〗^n)/(n+1)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точн
500 руб.
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант 4
IT-STUDHELP
: 12 мая 2022
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
2. Найти общее решение дифференциального уравнения.
4. y^'=y/x+sin〖y/x〗
3. Найти область сходимости степенного ряда.
4. ∑_(n=1)^∞▒(x-1)^n/(n+1)!
4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
4. ∫_0^0,5▒〖x ln(1+x^3 )dx〗
5. По заданным условиям, построить область в к
570 руб.
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант №4
ilya2213
: 13 июня 2021
Вариант №4
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника . Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения (см. скрин)
Найти общее решение дифференциальною уравнения.
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0.001 значение определённого интеграла, раз
95 руб.
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант №4
Roma967
: 20 ноября 2019
Вариант №4
Задание 1. Кратные интегралы (см. скрин)
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения (см. скрин)
Найти общее решение дифференциальною уравнения.
Задание 3. Степенные ряды (см. скрин)
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции в ряд (см. скрин)
Вычислить с точностью
600 руб.
Другие работы
Оценка производственного потенциала промышленного предприятия (на примере ОАО "ХХХХХ")
Elfa254
: 2 ноября 2013
Доклад
Уважаемые председатель и члены аттестационной комиссии, разрешите представить Вам основные положения дипломной работы, выполненной на тему: Анализ производственного потенциала промышленного предприятия (на примере ОАО «ХХХХХ»).
Актуальность темы объясняется тем, что знание производственных потенциалов предприятий позволяет определить суммарный потенциал отрасли и народного хозяйства, создает основу для обеспечения сопряженности смежных предприятий и производств.
Целью работы является п
10 руб.
Отчет по практике: Бухгалтерская и финансовая отчетность организации
alfFRED
: 7 сентября 2013
СОДЕРЖАНИЕ
1. Краткая характеристика деятельности ОАО «Ремэкс»
2. Содержание бухгалтерского баланса. Методика его составления
3. Содержание отчета о прибылях и убытках. Методика его составления
4. Содержание приложений к бухгалтерскому балансу и отчету о прибылях и убытках
5. Направления совершенствования бухгалтерской отчетности
Список использованной литературы
1. КРАТКАЯ ЭКОНОМИЧЕСКАЯ ХАРАКТЕРСТИКА ДЕЯТЕЛЬНОСТИ ОАО «РЕМЭКС»
Открытое акционерное общество «Ремэкс» создано в соответствии
15 руб.
Лабораторная работа №2 по дисциплине "Информатика" (вариант 4)
Greenberg
: 29 августа 2020
В соответствии с вариантом разработайте алгоритм обработки элементов массива.
Напишите программу на алгоритмическом языке в соответствии со схемой алгоритма.
Проведите тестирование программы в среде программирования.
Варианты заданий:
4 Создать текстовый файл с произвольным числом строк. В качестве исходного текста задать арифметическое
выражение, записанное на языке Си.
Проверить, соблюдается ли баланс открывающихся и закрывающихся скобок. Если равенство соблюдается, то вывести соответствующ
120 руб.
Теплотехника 5 задач Задача 5 Вариант 30
Z24
: 4 января 2026
Определить потребную поверхность рекуперативного теплообменника, в котором вода нагревается горячими газами. Расчет произвести для прямоточной и противоточной схем движения. Значения температур газа t′1 и t″1, воды t′2 и t″2, расхода воды M и коэффициента теплопередачи K выбрать из табл.3.
200 руб.