Вычислительная математика. Вариант 0.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра изображений
- Microsoft Word
Описание
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 0
,
где k – наименьший положительный корень уравнения .
Вопросы для защиты: 1, 6, 9, 11.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 0
,
где k – наименьший положительный корень уравнения .
Вопросы для защиты: 1, 6, 9, 11.
Дополнительная информация
2020. Зачтено.
Похожие материалы
Вычислительная математика. Курсовая работа. Вариант 0.
LowCost
: 26 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам
180 руб.
Вычислительная математика. Лабораторная работа №№1,2,3. Вариант №0.
holm4enko87
: 10 января 2025
Лабораторная работа No1. Линейная интерполяция.
Задание к работе:
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0
250 руб.
Вычислительная математика. Лабораторная работа №№1,2,3. Вариант №0.
LowCost
: 26 мая 2020
Лабораторная работа No1. Линейная интерполяция.
Задание к работе:
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до
290 руб.
Вычислительная математика. Лабораторная работа № 2. Вариант № 0.
nik200511
: 23 января 2020
Лабораторная работа No 2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью д
108 руб.
Вычислительная математика. Курсовая работа, 2019. Вариант 0.
nik200511
: 23 января 2020
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методо
194 руб.
Вычислительная математика. Лабораторная работа №1. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
108 руб.
Вычислительная математика. Курсовая работа (2019). Вариант 0.
nik200511
: 6 июня 2019
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам
193 руб.
Вычислительная математика. Лабораторная работа №3. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №3. Численное дифференцирование
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шаг
108 руб.
Другие работы
Наружная реклама: реклама в метро - специфика и применение
GnobYTEL
: 20 июля 2015
Понятие наружной рекламы
Реклама в метрополитене
Характеристика рекламы в метрополитене
Виды рекламных носителей в метро
Эффективность рекламы в метрополитене
Отличие рекламы в метрополитене от других видов рекламы
Анализ рекламных сообщений в метрополитене
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 3.14
Z24
: 12 ноября 2025
Определить равнодействующую силу гидростатического давления воды на прямоугольный затвор высотой h=1,6 м и шириной b= 2,0 м (рис. 3.21), если глубины воды Н1=3,0 м, Н2=0,8 м. Найти глубину погружения центра давления.
200 руб.
Курсовая по Микроэкономике. Конкуренция и рыночная власть. Вариант №4
dychkova
: 14 апреля 2013
Содержание
Введение
1. Монополия и рыночная власть………………………………………….4
2. Монополистическая конкуренция………………………………………8
3. Особенности рыночной власти в условиях олигополии……………..14
4. Антимонопольное законодательство…………………………………..18
5. Антимонопольная политика России на современном этапе…………21
Список использованной литературы…………………….……………….25
150 руб.
Комплексное проектирование водо - воздушного теплообменника системы аварийного охлаждения контура охлаждающей воды теплового двигателя
shoom
: 30 сентября 2010
Содержание
1. Задание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Определение параметров охлаждающей и охлаждаемой сред по
уравнению теплового баланса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Конструкторский расчет теплообменного аппарата. . . . . . . . . . . . . . . . . . . . . . . 4
4. Аэродинамический расчет теплообменного аппарата. . . . . . . . . . . . . . . . . . . . . . 7
5.