Математическое моделирование телекоммуникационных устройств и систем: Контрольная работа, вариант №2
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле S(i) = 1 + No варианта. Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
No отсчета 1 2 3 4 5 6 7
Величина отсчета 0,147 * А 0,5 * А 0,854 * А 1 * А 0,854 * А 0,5 * А 0,147 * А
А = (1+No варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
Приведем простейший пример. Пусть входной сигнал задан двумя временными отсчетами S1 = 1 и S2 = 1. Импульсная реакция так же задана двумя отсчетами g1 = 0,5 и g2 = 0,2. Матричный аналог интеграла свертки будет иметь вид |(|1 1|)|×‖(0.5&0.2 0@0& 0.5 0.2)‖=|(|0.5 0.7 0.2|)|.
Далее необходимо рассчитать энергии входного и выходного сигналов, как сумму квадратов их временных отсчетов.
Наконец, рассчитывается коэффициент энергетической эффективности сигнала как отношение его энергии на выходе канала к энергии на входе канала.
Расчеты выполняются для каждого варианта сигнала. Очевидно, что оптимальным по энергетическому критерию сигналом будет тот, коэффициент энергетической эффективности которого больше.
Эта задача иллюстрирует возможности численных методов моделирования для решения одной из оптимизационных задач теории связи. Добавим, что поиск наилучшего из всех возможных сигналов по критерию энергетической эффективности осуществляется на базе поиска собственных векторов матрицы оператора канала. Поэтому лучший сигнал, найденный при решении этой задачи, вполне может оказаться не самым лучшим из всех возможных сигналов.
Вторая задача предназначена для проверки знаний и умений организации эксперимента по исследованию помехоустойчивости системы передачи дискретных сообщений методом имитационного статистического моделирования.
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0,1+0,1×Noварианта.
Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля. Раскрыть тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
В следующей таблице приведены варианты заданий для выполнения теоретической части контрольной работы.
Вариант
по последней цифре пароля Тема контрольной работы
Вариант 0 Математическое описание сигналов и помех
Вариант 1 Математические методы эффективного (безызбыточного) кодирования источников дискретных сообщений
Вариант 2 Математические модели непрерывных каналов
Вариант 3 Математические основы оптимизации сигналов для телекоммуникационных систем
Вариант 4 Математические модели приемников дискретных сигналов
Вариант 5 Математические модели дискретных каналов
Вариант 6 Математическое представление помехоустойчивого кодирования
Вариант 7 Алгоритм функционирования систем передачи данных с обратной связью
Вариант 8 Исследование помехоустойчивости телекоммуникационных систем методом статистического моделирования
Вариант 9 Визуальное моделирование в среде MATLAB
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле S(i) = 1 + No варианта. Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
No отсчета 1 2 3 4 5 6 7
Величина отсчета 0,147 * А 0,5 * А 0,854 * А 1 * А 0,854 * А 0,5 * А 0,147 * А
А = (1+No варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
Приведем простейший пример. Пусть входной сигнал задан двумя временными отсчетами S1 = 1 и S2 = 1. Импульсная реакция так же задана двумя отсчетами g1 = 0,5 и g2 = 0,2. Матричный аналог интеграла свертки будет иметь вид |(|1 1|)|×‖(0.5&0.2 0@0& 0.5 0.2)‖=|(|0.5 0.7 0.2|)|.
Далее необходимо рассчитать энергии входного и выходного сигналов, как сумму квадратов их временных отсчетов.
Наконец, рассчитывается коэффициент энергетической эффективности сигнала как отношение его энергии на выходе канала к энергии на входе канала.
Расчеты выполняются для каждого варианта сигнала. Очевидно, что оптимальным по энергетическому критерию сигналом будет тот, коэффициент энергетической эффективности которого больше.
Эта задача иллюстрирует возможности численных методов моделирования для решения одной из оптимизационных задач теории связи. Добавим, что поиск наилучшего из всех возможных сигналов по критерию энергетической эффективности осуществляется на базе поиска собственных векторов матрицы оператора канала. Поэтому лучший сигнал, найденный при решении этой задачи, вполне может оказаться не самым лучшим из всех возможных сигналов.
Вторая задача предназначена для проверки знаний и умений организации эксперимента по исследованию помехоустойчивости системы передачи дискретных сообщений методом имитационного статистического моделирования.
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0,1+0,1×Noварианта.
Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля. Раскрыть тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
В следующей таблице приведены варианты заданий для выполнения теоретической части контрольной работы.
Вариант
по последней цифре пароля Тема контрольной работы
Вариант 0 Математическое описание сигналов и помех
Вариант 1 Математические методы эффективного (безызбыточного) кодирования источников дискретных сообщений
Вариант 2 Математические модели непрерывных каналов
Вариант 3 Математические основы оптимизации сигналов для телекоммуникационных систем
Вариант 4 Математические модели приемников дискретных сигналов
Вариант 5 Математические модели дискретных каналов
Вариант 6 Математическое представление помехоустойчивого кодирования
Вариант 7 Алгоритм функционирования систем передачи данных с обратной связью
Вариант 8 Исследование помехоустойчивости телекоммуникационных систем методом статистического моделирования
Вариант 9 Визуальное моделирование в среде MATLAB
Дополнительная информация
2020,Сибгути ДО, зачет
Похожие материалы
Математическое моделирование телекоммуникационных устройств и систем. Контрольная работа. Вариант 2
aleshin
: 13 октября 2022
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух ва
182 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №2
IT-STUDHELP
: 12 декабря 2023
Вариант №2
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант 2
Roma967
: 31 марта 2023
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 - Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать ма
800 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №2
debug106
: 4 января 2021
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем Вариант 2
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Задача №2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вер
350 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №2
IT-STUDHELP
: 2 января 2020
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать
500 руб.
Математическое моделирование телекоммуникационных устройств и систем
Dirol340
: 25 января 2021
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация дл
330 руб.
Математическое моделирование телекоммуникационных устройств и систем. В-2
banderas0876
: 27 мая 2023
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Задача №2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия.
3. Математические
250 руб.
Математическое моделирование телекоммуникационных устройств и систем. Контрольная работа. Вариант 3
aleshin
: 13 октября 2022
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух ва
214 руб.
Другие работы
Особливості роботи операційної системи Windows
Slolka
: 7 октября 2013
Вступ
Мета заняття
· Придбання практичних навичок роботи на комп’ютері в операційному середовищі WINDOWS ;
· Ознайомлення з інтерфейсом WINDOWS;
· Вивчення побудови вікон у WINDOWS;
· Придбання навичок роботи при виконанні з файлами і папками.
Завдання:
1. Основні елементи інтерфейсу Windows?
2. Що таке ярлик?
3. Як створити папку і ярлик?
4. Як переглянути інформацію у вікні, якщо вона перевищує розмір вікна?
5. Яке призначення програми «Проводник»?
6. Як виділяти файли і
10 руб.
Лабораторная работа №3 по дисциплине: Технологии транспортных сетей. Вариант 6
SibGUTI2
: 28 января 2024
Лабораторная работа 3
Настройка динамического протокола OSPF в транспортных сетях
Цель работы: необходимо сконфигурировать динамический протокол OSPF в заданной транспортной сети с помощью Cisco Packet Tracer, проверив связность заданных узлов.
Задание
В Cisco Packet Tracer нужно промоделировать схему, изображенную на рис. 1. Проверить связность между Router’ами 3 и 4 (отправкой ICMP-пакетов). Адреса устройствам задавать статически, на всех маршрутизаторах настроить динамическую маршрутизацию
300 руб.
Зачетное задание. Билет №1 по дисциплине: Дополнительные главы математического анализа
ЖЕНЬКА
: 26 декабря 2013
1. Числовой ряд. Сходимость ряда. Необходимое условие сходимости.
2. Найти область сходимости ряда
3. Вычислить определенный интеграл с помощью разложения подынтегральной функции в степенной ряд
4. Вычислить контурный интеграл от функции комплексной переменной с помощью вычетов ,
5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
100 руб.
Общая характеристика методов социально-психологических исследований
Qiwir
: 18 октября 2013
Социально-психологическая наука строится на основе проведения социально-психологических исследований.
Социально-психологическое исследование — вид научного исследования с целью установления в поведении и деятельности людей психологических закономерностей, обусловленных фактом включения в социальные (большие и малые) группы, а также психологических характеристик самих этих групп.
Любое социально-психологическое исследование нацелено на получение информацию с помощью научных методов.
Психологич