Дискретная математика
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант 23
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\B = AD (AÇ B) б) (AÈ C) ́ B = (C ́ B) È ((AÇ C) ́ B) È (A ́ B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(a,4),(b,1),(c,4),(c,3),(c,2)}; P2 = {(1,1),(1,4),(2,1),(2,2),(2,4),(3,3),(4,4),(4,3),(3,2),(3,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í (Z+)2, P = {(x,y) | x2 = y}, где Z+ = {xÎ Z | x > 0}.
No4 Доказать утверждение методом математической индукции:
(4n + 6·n – 1) кратно 9 для всех натуральных n > 0.
No5 Девять сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, испанского, немецкого и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в трех совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 9, 14, 21? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3·y2·z6, b=x3·y·z2, c=x4·y4 в разложении (2·x+5·y2+3·z3)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 6·an+1 – 20·an = 0· и начальным условиям a1=4, a2=1.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры.
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\B = AD (AÇ B) б) (AÈ C) ́ B = (C ́ B) È ((AÇ C) ́ B) È (A ́ B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(a,4),(b,1),(c,4),(c,3),(c,2)}; P2 = {(1,1),(1,4),(2,1),(2,2),(2,4),(3,3),(4,4),(4,3),(3,2),(3,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í (Z+)2, P = {(x,y) | x2 = y}, где Z+ = {xÎ Z | x > 0}.
No4 Доказать утверждение методом математической индукции:
(4n + 6·n – 1) кратно 9 для всех натуральных n > 0.
No5 Девять сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, испанского, немецкого и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в трех совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 9, 14, 21? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3·y2·z6, b=x3·y·z2, c=x4·y4 в разложении (2·x+5·y2+3·z3)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 6·an+1 – 20·an = 0· и начальным условиям a1=4, a2=1.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v1 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Принятая работа из 10 заданий
Похожие материалы
Дискретная математика
Kir2791
: 18 сентября 2023
Вариант: No3
Задача I
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,2,3,4,5},
A={1, 3, 5}; B={2, 4}, C={2,3,4}, D={5}.
(U \ A)∪ D;
(A ̅∩D ̅ ) ̅;
((A\C)\D)∪B;
(A∩C)∪B;
(C ̅∩B) ̅.
Задача II
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
”Если на небе светит солнце, и не идёт дождь, то погода подходит для пикника”.
Задача
50 руб.
Дискретная математика
Kir2791
: 18 сентября 2023
вариант 2
1 Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Дано:
; ; ; .
Найти:
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минималь
30 руб.
300 руб.
Дискретная математика
ezhva
: 2 августа 2021
Дискретная математика
...
11. Если на множестве всех треугольников на плоскости рассматривается отношение подобия, то данное отношение является отношением ...
...
17. Если из высказывания S1 следует S2 и, наоборот, из S2 следует S1, то высказывания S1 и S2 ... эквивалентными
...
22. Дистрибутивные законы булевой алгебры действительных чисел ...
...
27. Если А - множество всех книг во всех библиотеках России, а В - множество всех книг в библиотеке МГУ по различным отделам науки и искусства, тогда
180 руб.
Дискретная математика
Алексей115
: 14 августа 2020
Оценка - Зачёт
Вариант 16
1) Перестановки с повторениями – дать определение, привести формулу для расчета числа вариантов. В чем отличие от перестановок без повторений? Привести примеры.
2) Понятие связности, компонент связности, сильной и слабой связности орграфа. Построение фактор-графа. Привести пример.
3) Выяснить, является ли функция f(x) = x3+6, у которой область определения и область значений совпадает с действительной числовой осью, инъективной, сюръективной, имеет ли она обратную функ
200 руб.
Дискретная математика
lyolya
: 29 марта 2020
1. Задано универсальное множество U={10,11,12,13,14} и множества A={10,11,12};B={12,13,14};C={10,14};D={12}. Найти результаты действий a) ; б) ; в) ; г) ; д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице ис
70 руб.
Дискретная математика
Sakhal
: 1 апреля 2019
I. Задано универсальное множество U и множества A, B, C и D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По ми
200 руб.
Дискретная математика
ANZHL
: 19 апреля 2018
I. Задано универсальное множество и множества . Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграммЭйлера-Венна.
2.
100 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.