Контрольная работа. Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант 12
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Контрольная работа. Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант 12
Задача 1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюдений (стандартную неопределенность единичного измерения) S;
3. Границы максимальной неопределенность случайной составляющей погрешности результата наблюдений Δ макс;
4. Оценку среднего квадратического отклонения погрешности случайной составляющей результата измерения (стандартную неопределенность результата измерения) S(l ̅);
5. Границы доверительного интервала (расширенную неопределенность) для результата измерения расстояния до места повреждения ε при заданной доверительной вероятности α ;
6. Записать результат измерения расстояния до места повреждения в соответствии с нормативными документами.
7. Систематическую составляющую погрешности измерения рефлектометра θ, если после обнаружения места повреждения было установлено. что действительное расстояние до него составляло l_∂ метров. Сравните ее с доверительным интервалом случайной составляющей погрешности результата измерения, и сделать вывод;
8.Предложить способ уменьшения оценки СКО случайной составляющей погрешности результата измерения в D раз.
Таблица.1.1 Исходные данные
M i l_∂ ,м D
1 5 – 10 272,3 2,1
Таблица 1.2 Исходные данные
N i α
2 60 – 68 0,98
Таблица 1.3 Результаты однократных измерений.
I l_i i l_i
5 275,81 60 274,63
6 273,50 61 275,30
7 276,65 62 275,23
8 275,81 63 275,52
9 273,28 64 276,03
10 275,30 65 276,56
66 273,75
67 274,76
68 274,24
Задача 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1).
Мощность в нагрузке измеряют с помощью вольтметра V при нормальных условиях измерения. Показания прибора и его метрологические характеристики – условное обозначение класса точности и конечное значение шкалы прибора или диапазона измерения приведены в таблице 2.1. В таблице 2.2 приведены: метрологические характеристики измерительного генератора – числовое значение сопротивления Rг и его относительная погрешность δ Rг; сопротивления нагрузки – значения сопротивления Rн и его относительная погрешность δ Rн.
MN = 12
Таблица 2.1
M 1
Показание амперметра IA, мА 19
Класс точности амперметра % 2
Конечное значение шкалы амперметра или диапазон измерения, мА -50 ̧ 50
Таблица 2.2
N 2
Rг , Ом 75
Относительная погрешность, δ Rг, % 7,2
Rн, Ом 450
Относительная погрешность, δ Rн, % 3,5
Определить абсолютный уровень напряжения РE
Определить абсолютный уровень мощности Р∑
Необходимо определить:
1. Абсолютный уровень ЭДС генератора рE
2. Абсолютный уровень суммарной мощности, выделяемой на внутреннем сопротивлении генератора и сопротивлении нагрузки р∑.
3. Оценить границы абсолютной погрешности измерения абсолютных уровней напряжения и мощности, определенных в п.1 и п.2.
4. Оформить результаты измерения абсолютных уровней напряжения и мощности в соответствии с нормативными документами.
Задача No 3
На рисунке 3.1 показана осциллограмма периодического сигнала, который наблюдали на выходе исследуемого устройства.
Требуется найти:
Аналитическое описание исследуемого сигнала.
Пиковое (Um), среднее (Uср ), средневыпрямленное (Uср.в) и среднеквадратическое (U) значения напряжения выходного сигнала заданной формы.
Пиковое (U_m^~), среднее (U_cp^~), средневыпрямленное (U_(cp.в)^~) и среднеквадратическое (U^~) значения напряжения переменной составляющей заданного выходного сигнала.
Коэффициенты амплитуды (〖K_a,K〗_a^~), формы (〖K_ф,K〗_ф^~) и усреднения (〖K_y,K〗_y^~) всего исследуемого сигнала и его переменной составляющей.
Показания вольтметров с различными типами преобразователей с закрытым (З) или открытым (О) входом в соответствии с заданием, если вольтметры проградуированы в среднеквадратических значениях для гармонического сигнала.
Оценить предел допускаемой относительной погрешности (расширенной неопределенности) показаний вольтметров, определенных в 5 пункте задания, если используемые измерительные приборы имеют класс точности γ и конечное значение шкалы (предел измерения) Uк указанные в таблицах 3.1 и 3.2.
Оформить результаты измерений напряжения вольтметрами в соответствии с нормативными документами, если измерения проведены в нормальных условиях.
Таблица 3.1
N Рис. 3.1 Т, мкс τ, мкс Класс
точности γ Найти показания вольтметров
2 д 30 15 2 UV1 UV2 UV3 UV4
СВ, О ПВ, З КВ, З КВ, О
Обозначения в таблице:
ПВ – пиковый вольтметр;
СВ – вольтметр с преобразователем средневыпрямленных значений;
КВ – вольтметр с преобразователем среднеквадратических значений;
О – вольтметр с открытым входом;
З – вольтметр с закрытым входом.
Таблица 3.2
M Uк, В Um, В k
1 3 1,5 0,3
Задача No4
При измерении частоты генератора методом сравнения (рис. 4.1) к входу канала горизонтального отклонения (канала "X") осциллографа приложен гармонический сигнал от генератора образцовой частоты:
U_(X обр)=U_(m обр)∙sin(ω_обр∙t+ψ),
а к входу канала вертикального отклонения (канала "Y") – гармонический сигнал исследуемого генератора:
U_(Y иссл)=U_(m иссл)∙sin(ω_иссл∙t+φ)
где ω=2πƒ – круговая частота,
ƒ – циклическая частота,
ψ и φ – начальные фазовые углы образцового и исследуемого сигналов соответственно. Измерения проведены в нормальных условиях, границы относительной погрешности частоты образцового генератора δfобр определены с вероятностью P = 0,997.
Рисунок 4.1
Задание.
1. Определить по заданным значениям частот сигналов ожидаемое отношение числа точек пересечений фигуры Лиссажу с горизонтальной секущей nг к числу точек пересечений фигуры Лиссажу с вертикальной секущей nв.
2. Построить фигуру Лиссажу, которую можно наблюдать на экране осциллографа при заданных значениях Um обр , ƒобр , Um иссл , ƒиссл , ψ и φ , считая коэффициенты отклонения каналов Y (ko.в) и X (ko.г) одинаковыми и равными 1 В/см .
3. Оценить абсолютную Δƒcр и относительную δƒcр погрешности сравнения частот исследуемого и образцового генераторов, вызванную изменением фигуры Лиссажу, если за время, равное Т секунд, она повторно воспроизводилась 5 раз.
4. Оценить границы абсолютной Δƒиссл и относительной δƒиссл погрешности измерения частоты исследуемого генератора, если известны границы относительной погрешности частоты образцового генератора δfобр .
5. Записать результат измерения частоты ƒиссл в соответствии с нормативными документами в двух вариантах: 1) с указанием границ абсолютной погрешности; 2) с указанием границ относительной погрешности.
Исходные данные для решения приведены в таблицах 4.1 и 4.2.
Таблица 4.1
M Um обр , В ƒобр , Гц φ, рад δ fобр , %
1 1,5 2800 0 0,25
Таблица 4.2
N Т, с ψ, рад ƒиссл, Гц Um иссл , В
2 16 π/2 1400 1,5
Задача 1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонения (СКО) погрешности результата наблюдений (стандартную неопределенность единичного измерения) S;
3. Границы максимальной неопределенность случайной составляющей погрешности результата наблюдений Δ макс;
4. Оценку среднего квадратического отклонения погрешности случайной составляющей результата измерения (стандартную неопределенность результата измерения) S(l ̅);
5. Границы доверительного интервала (расширенную неопределенность) для результата измерения расстояния до места повреждения ε при заданной доверительной вероятности α ;
6. Записать результат измерения расстояния до места повреждения в соответствии с нормативными документами.
7. Систематическую составляющую погрешности измерения рефлектометра θ, если после обнаружения места повреждения было установлено. что действительное расстояние до него составляло l_∂ метров. Сравните ее с доверительным интервалом случайной составляющей погрешности результата измерения, и сделать вывод;
8.Предложить способ уменьшения оценки СКО случайной составляющей погрешности результата измерения в D раз.
Таблица.1.1 Исходные данные
M i l_∂ ,м D
1 5 – 10 272,3 2,1
Таблица 1.2 Исходные данные
N i α
2 60 – 68 0,98
Таблица 1.3 Результаты однократных измерений.
I l_i i l_i
5 275,81 60 274,63
6 273,50 61 275,30
7 276,65 62 275,23
8 275,81 63 275,52
9 273,28 64 276,03
10 275,30 65 276,56
66 273,75
67 274,76
68 274,24
Задача 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1).
Мощность в нагрузке измеряют с помощью вольтметра V при нормальных условиях измерения. Показания прибора и его метрологические характеристики – условное обозначение класса точности и конечное значение шкалы прибора или диапазона измерения приведены в таблице 2.1. В таблице 2.2 приведены: метрологические характеристики измерительного генератора – числовое значение сопротивления Rг и его относительная погрешность δ Rг; сопротивления нагрузки – значения сопротивления Rн и его относительная погрешность δ Rн.
MN = 12
Таблица 2.1
M 1
Показание амперметра IA, мА 19
Класс точности амперметра % 2
Конечное значение шкалы амперметра или диапазон измерения, мА -50 ̧ 50
Таблица 2.2
N 2
Rг , Ом 75
Относительная погрешность, δ Rг, % 7,2
Rн, Ом 450
Относительная погрешность, δ Rн, % 3,5
Определить абсолютный уровень напряжения РE
Определить абсолютный уровень мощности Р∑
Необходимо определить:
1. Абсолютный уровень ЭДС генератора рE
2. Абсолютный уровень суммарной мощности, выделяемой на внутреннем сопротивлении генератора и сопротивлении нагрузки р∑.
3. Оценить границы абсолютной погрешности измерения абсолютных уровней напряжения и мощности, определенных в п.1 и п.2.
4. Оформить результаты измерения абсолютных уровней напряжения и мощности в соответствии с нормативными документами.
Задача No 3
На рисунке 3.1 показана осциллограмма периодического сигнала, который наблюдали на выходе исследуемого устройства.
Требуется найти:
Аналитическое описание исследуемого сигнала.
Пиковое (Um), среднее (Uср ), средневыпрямленное (Uср.в) и среднеквадратическое (U) значения напряжения выходного сигнала заданной формы.
Пиковое (U_m^~), среднее (U_cp^~), средневыпрямленное (U_(cp.в)^~) и среднеквадратическое (U^~) значения напряжения переменной составляющей заданного выходного сигнала.
Коэффициенты амплитуды (〖K_a,K〗_a^~), формы (〖K_ф,K〗_ф^~) и усреднения (〖K_y,K〗_y^~) всего исследуемого сигнала и его переменной составляющей.
Показания вольтметров с различными типами преобразователей с закрытым (З) или открытым (О) входом в соответствии с заданием, если вольтметры проградуированы в среднеквадратических значениях для гармонического сигнала.
Оценить предел допускаемой относительной погрешности (расширенной неопределенности) показаний вольтметров, определенных в 5 пункте задания, если используемые измерительные приборы имеют класс точности γ и конечное значение шкалы (предел измерения) Uк указанные в таблицах 3.1 и 3.2.
Оформить результаты измерений напряжения вольтметрами в соответствии с нормативными документами, если измерения проведены в нормальных условиях.
Таблица 3.1
N Рис. 3.1 Т, мкс τ, мкс Класс
точности γ Найти показания вольтметров
2 д 30 15 2 UV1 UV2 UV3 UV4
СВ, О ПВ, З КВ, З КВ, О
Обозначения в таблице:
ПВ – пиковый вольтметр;
СВ – вольтметр с преобразователем средневыпрямленных значений;
КВ – вольтметр с преобразователем среднеквадратических значений;
О – вольтметр с открытым входом;
З – вольтметр с закрытым входом.
Таблица 3.2
M Uк, В Um, В k
1 3 1,5 0,3
Задача No4
При измерении частоты генератора методом сравнения (рис. 4.1) к входу канала горизонтального отклонения (канала "X") осциллографа приложен гармонический сигнал от генератора образцовой частоты:
U_(X обр)=U_(m обр)∙sin(ω_обр∙t+ψ),
а к входу канала вертикального отклонения (канала "Y") – гармонический сигнал исследуемого генератора:
U_(Y иссл)=U_(m иссл)∙sin(ω_иссл∙t+φ)
где ω=2πƒ – круговая частота,
ƒ – циклическая частота,
ψ и φ – начальные фазовые углы образцового и исследуемого сигналов соответственно. Измерения проведены в нормальных условиях, границы относительной погрешности частоты образцового генератора δfобр определены с вероятностью P = 0,997.
Рисунок 4.1
Задание.
1. Определить по заданным значениям частот сигналов ожидаемое отношение числа точек пересечений фигуры Лиссажу с горизонтальной секущей nг к числу точек пересечений фигуры Лиссажу с вертикальной секущей nв.
2. Построить фигуру Лиссажу, которую можно наблюдать на экране осциллографа при заданных значениях Um обр , ƒобр , Um иссл , ƒиссл , ψ и φ , считая коэффициенты отклонения каналов Y (ko.в) и X (ko.г) одинаковыми и равными 1 В/см .
3. Оценить абсолютную Δƒcр и относительную δƒcр погрешности сравнения частот исследуемого и образцового генераторов, вызванную изменением фигуры Лиссажу, если за время, равное Т секунд, она повторно воспроизводилась 5 раз.
4. Оценить границы абсолютной Δƒиссл и относительной δƒиссл погрешности измерения частоты исследуемого генератора, если известны границы относительной погрешности частоты образцового генератора δfобр .
5. Записать результат измерения частоты ƒиссл в соответствии с нормативными документами в двух вариантах: 1) с указанием границ абсолютной погрешности; 2) с указанием границ относительной погрешности.
Исходные данные для решения приведены в таблицах 4.1 и 4.2.
Таблица 4.1
M Um обр , В ƒобр , Гц φ, рад δ fобр , %
1 1,5 2800 0 0,25
Таблица 4.2
N Т, с ψ, рад ƒиссл, Гц Um иссл , В
2 16 π/2 1400 1,5
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Метрология, стандартизация и сертификация в инфокоммуникациях
Вид работы: Контрольная работа
Оценка: Зачет
Дата оценки: **.10.2020
Рецензия:Уважаемый Студент,
ЗАЧЕТ
Работа выполнена, верно.
Запасный Игорь Николаевич
Оценена Ваша работа по предмету: Метрология, стандартизация и сертификация в инфокоммуникациях
Вид работы: Контрольная работа
Оценка: Зачет
Дата оценки: **.10.2020
Рецензия:Уважаемый Студент,
ЗАЧЕТ
Работа выполнена, верно.
Запасный Игорь Николаевич
Похожие материалы
Контрольная работа по дисциплине: «Метрология, стандартизация и сертификация в инфокоммуникациях». Вариант №12
Колька
: 24 марта 2017
Задача No1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) по
150 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
IT-STUDHELP
: 12 февраля 2022
Вопрос No1
За достоверность и объективность результатов испытаний при выдаче сертификата несут ответственность:
испытательные лаборатории
орган по сертификации
госстандарт РФ
Вопрос No2
Стандартизация не направлена на достижение цели:
безопасность продукции, работ, услуг для жизни и здоровья людей, окружающей среды и имущества
экономию всех видов ресурсов
унификация разработки (ведения), утверждения (актуализации), изменения, отмены, опубликования и применения документов по стандарт
1500 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
IT-STUDHELP
: 12 февраля 2022
Вопрос No1
Знак соответствия это:
обозначение, служащее для информирования приобретателей, в том числе потребителей, о соответствии объекта сертификации требованиям системы добровольной сертификации
зарегистрированный как знак, который маркирует продукцию
обозначение, служащее для информирования приобретателей, в том числе потребителей, о соответствии выпускаемой в обращение продукции требованиям технических регламентов
Вопрос No2
Как называется значение физической величины, найденное эк
480 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
astoria
: 24 февраля 2021
Задача No 1
Для определения расстояния до места повреждения кабельной линии
связи был использован импульсный рефлектометр. С его помощью получено n (результатов единичных измерений) расстояния l_i до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, выполнить следующие задания.
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля l ̅.
2. Оценку среднего квадратического отклонен
300 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
pewpewlolpro
: 9 ноября 2018
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Метрология, стандартизация и сертификация в инфокоммуникациях
Вид работы: Лабораторная работа 2
Оценка:Зачет
2018 год
220 руб.
Метрология, стандартизация и сертификация в инфокоммуникациях
nata
: 17 января 2018
Задача № 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n результатов однократных
Задача № 2
При определении вносимого ослабления четырехполюсника необходимо измерить абсолютный уровень мощности рн, отдаваемой генератором с внутренним сопротивлением Rг и ЭДС E в сопротивление нагрузки Rн (рисунок 2.1).
Задача № 3
На рисунке 3.1 показаны осциллограммы периодических сигналов, которые наблюдали на выходе иссле
85 руб.
Контрольная работа - МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ В ИНФОКОММУНИКАЦИЯХ В-34
ilias83
: 9 апреля 2020
МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ В ИНФОКОММУНИКАЦИЯХ
800 руб.
Контрольная работа по дисциплине: Метрология, стандартизация и сертификация в инфокоммуникациях
anderwerty
: 21 февраля 2016
Вариант 07
Задача No1.
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено результатов однократных измерений (результатов наблюдений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, определить:
1. Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля ;
2. Оценку среднего квадратического отклонен
40 руб.
Другие работы
Контрольная работа по дисциплине: Основы информационной безопасности. Вариант 10
IT-STUDHELP
: 14 мая 2022
Анализ проблемы управления информационной безопасностью
Содержание
Введение 3
1. Понятие информационной безопасности 4
2. Современные проблемы информационной безопасности 7
3. Проблемы управления информационной безопасностью на уровне предприятия 11
Заключение 15
Список использованных источников 16
400 руб.
Детали насоса НМ3600-230 Втулка (А3)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 13 мая 2016
Детали насоса НМ3600-230 Втулка (А3)-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
100 руб.
Физика. Экзаменационная работа. Билет № 12. 2-й семестр.
Shamrock
: 2 февраля 2015
Билеты по физике для студентов заочного отделения
Второй семестр. Технические специальности
Билет 12
1. Интерференция на тонких пленках. Условие наблюдения максимума, условие наблюдения минимума при интерференции на пленке
Уравнение Шредингера. Стационарное и временное уравнение Шредингера. Собственные значения и собственные функции
280 руб.
Кран пробковый МЧ00.79.00.00
coolns
: 28 октября 2019
Кран пробковый автокад
Кран пробковый чертеж
Кран пробковый чертежи
Кран пробковый деталирование
Кран пробковый скачать
Кран пробковый деталировка
Пробковый кран предназначен для изменения площади поперечного сечения трубопровода, а следовательно, и количества жидкости, проходящей по трубопроводу.
Кран фланцем поз. 5 устанавливают на резервуар с жидкостью и крепят четырьмя болтами с гайками (на чертеже не показаны). К корпусу крана поз. 1 подведены два трубопровода. Трубопроводы подсоединяют с
260 руб.