Страницу Назад
Поискать другие аналоги этой работы

500

Контрольная работа Основы оптической связи

ID: 215286
Дата закачки: 11 Января 2021
Продавец: olyazaripova (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Работа Контрольная
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
1. Основы физической и квантовой оптики

Изучите конспект, учебную литературу и ответьте письменно на следующие вопросы:
1. Почему применяют диапазона волн 0,4 - 1,8мкм в технике оптической связи?
2. Объяснить связь энергии фотона и длины волны излучения.
3. Объяснить законы, являющиеся основой геометрической оптики.
4. В чём физический смысл показателя преломления?
5. Почему поляризуются электромагнитные волны?
6. Что является результатом интерференции волн?
7. Перечислить оптические приборы техники связи, которые строятся на основе интерференции.
8. Как устроена дифракционная решетка?
9. В чём смысл условия Брэгга-Вульфа?
10. Объяснить смысл «запрещённой зоны» полупроводниковых материалов.
11. Для чего предназначено соединение GaAs в технике ВОСП?
12. Что служит признаком отличая прямозонных и непрямозонных материалов?
13. Что возможно в p-n переходах оптических приборов при прямом и обратном смещении?
14. Какое устройство в ВОСП имеет отражательные дифракционные решетки?
15. Какие компоненты входят в состав ВОСП?
16. Для чего нужен оптический конвертор ВОСП?

2. Физические среды оптической связи и их характеристики
Изучите конспект, учебную литературу и ответьте письменно на следующие вопросы:
1. Привести определение волоконно-оптической системой передачи.
2. Указать диапазон электромагнитных волн (частот) для применение в оптических системах передачи.
3. Что относится к передаточным характеристикам волоконных световодов?
4. Назвать материалы для изготовления волоконных световодов.
5. В чём измеряют потери оптической мощности в стекловолокне?
6. В чём отличие характеристик волоконных световодов стандарта G.652 с различными буквенными индексами (A,B,C, D)?
7. Определить полосу частот рабочего диапазона S для SMF улучшенного типа.
8. Почему образуется дисперсия в оптическом волокне?
9. Чем отличаются конструкции и характеристики волокон SMF, NZDSF и DCF?
10. Почему возможны разные виды дисперсии в волоконных световодах?
11. Что такое ПМД?
12. Как влияет ПМД на скорости и дальности передачи в оптических линиях?
13. Почему появляются нелинейные оптические эффекты в стекловолокне?
14. Чем вызваны потери оптической энергии в атмосфере Земли?
15. Назвать основные конструкции оптических кабелей.
Определить затухание, дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов в волоконно-оптической системе с длиной секции L (км), километрическим затуханием  (дБ/км) на длине волны излучения передатчика 0 (мкм), ширине спектра излучения 0,5 (нм) на уровне половины максимальной мощности излучения. Данные для задачи приведены в табл.2.1 и 2.2. Определить мощность оптического излучения в волокне на выходе секции, если на входе подключен оптический генератор с уровнем мощности +10дБм на заданной длине волны λ0. Составить схему измерения этой мощности оптическим тестером.

Таблица 2.1  Длина оптической секции
Параметр Предпоследняя цифра номера пароля
 3
Длина оптической секции, км 110

Таблица 2.2  Характеристики волокон
Параметр Последняя цифра номера пароля
 0
Тип волокна SF
Коэффициент затухания, α, дБ/км 0,36
Длина волны, λ0, нм 1,305
Спектральная линия, Δλ0,5, нм 0,05
Коэффициент хроматической дисперсии, σХр, пс/(нм×км) 3.0
Затухание на разъёмных соединениях, lrs , дБ 0,1

3. Пассивные устройства в оптической схемотехнике
1. На сколько отличаются по величине затухания отражения прямой и угловой физические контакты коннекторе ?
2. Что соединяют оптические розетки?
3. Чем отличаются оптические аттенюаторы?
4. Какие устройства в состав оптического кросса?
5. Что разделяют оптические разветвители?
6. Что изолирует оптический изолятор?
7. Что объединяют и разделяют оптические мультиплексоры и демультиплексоры?
8. Где применяется компенсатор дисперсии?
9. Как можно изменить маршрут световой волны?
10. Определите назначение OADM.
11. Какие оптические приборы входят в состав OADM?
4. Модули передачи оптических сигналов

4.1. Источники оптического излучения
1. Назвать требования к источнику оптического излучения ВОСП.
2. Что различного в конструкции и характеристиках торцевого и поверхностного светодиодов для оптической связи?
3. Перечислить конструкции лазеров для передатчиков техники оптической связи.
4. Представить резонатор Фабри – Перо и его характеристики.
5.  Устройство полупроводникового гетеролазера с резонатором Фабри – Перо.
6. Назвать способы достижения одномодового режима генерации в лазерах.
7. Как поддерживается температурный режим работы лазера?
8. Как перестроить длину волны излучения одномодового лазера?
9. Привести и сравнить диаграмму направленности излучения светодиода и лазера.
10. Какими приборами подключаются светодиоды и лазеры к волоконным световодам?

Задача 4.1
Определить характеристики многомодового лазера с резонатором Фабри – Перо (FP) и одномодового лазера с распределенной обратной связью (DFB).
Определить число мод в лазере FP, для которых выполняется условие возбуждения в полосе длин волн  при длине резонатора L и показателе преломления активного слоя n.
Определить частотный интервал между модами и добротность резонатора на центральной моде О при коэффициенте отражения R.
Изобразить конструкцию полоскового лазера FP и представить рисунок модового спектра.
Определить частоту и длину волны генерируемой моды в одномодовом лазере DFB для известных значений дифракционной решетки m и длины лазера L. Изобразить конструкцию лазера DFB. Исходные данные приведены в табл. 4.1-4.4.
Длина резонатора, L, мкм 
280
Δλ, нм 20
n 3,35
λ0, мкм 0,42
R 0,35

Длина решетки резонатора, L, мкм 215
Порядок решетки, m 1
Шаг решетки, d, мкм 0,08
Показатель преломления, nэ 3,45
Задача 4.2
Для модулятора Маха-Зендера рассчитать и построить передаточную (модуляционную) характеристику по варианту согласно табл. 4.5. Выбрать на построенной характеристике напряжение начального смещения с учётом амплитуды и полярности модулирующего сигнала, представленного по варианту в табл.4.6. Показать на рисунке изменение относительной величины оптической мощности при модуляции (пример на рис.4.51). По рисунку определить глубину модуляции.
5. Модули приёма оптических сигналов
5.1. Фотодетекторы

1. Перечислить требования к фотоприемникам оптических систем передачи.
2. Назвать виды фотодетекторов для оптических систем передачи.
3. Преимущества применения полупроводниковые фотодиоды в оптических системах передачи.
4. Какие характеристики имеет фотодиод конструкции p-i-n?
5. Что ограничивает диапазон оптических частот для фотодетектирования в полупроводниковых приборах?
6. Чем обусловлена длинноволновая граница чувствительности фотодиодов?
7. Что отличает конструкцию лавинного фотодиода (ЛФД) от конструкции фотодиода p-i-n?
8. Какое различие в принципе действия ЛФД и фотодиода p-i-n?
9. В каких конструкциях сокращается время включения фотодиода?
10. От чего зависит коэффициент усиления ЛФД?
11. Причины шума фотодиодов.
12. Назвать шумы фотодиодов, которые принципиально неустранимы.
13.  Указать преимущество фотодиодов типа TAP и TWPD перед ЛФД и P-i-N.
14.  Указать условия применения селективных фотодетекторов.
Задача 5.1
Построить график зависимости чувствительности фотодетектора от длины волны оптического излучения по данным табл. 5.1. Используя график и данные табл. 5.2 и 5.3 определить величину фототока на выходе p-i-n фотодиода. По графику определить длинноволновую границу чувствительности фотодетектора. Определить материал для изготовления прибора.

5.2. Фотоприёмные устройства

1. Назвать отличие прямого фотодетектирования от фотодетектирования с преобразованием.
2. Назначение функциональных блоков в схеме фотоприемного устройства (ФПУ) с прямым детектированием.
3.  Виды предварительных электрических усилителей для фотоприемных устройств.
4. Назвать элементы входной цепи фотоприемного устройства с прямым детектированием.
5.  Устройство входной цепи фотоприемного устройства детектирования с преобразованием. Принципиальное отличие от ФПУ прямого детектирования.
6. Соотношение между электрической и оптической полосами частот пропускания ФПУ.
7. Что определяет величину соотношения сигнал/шум на выходе ФПУ?
8. Чем выполняется противошумовая коррекция в ФПУ?
9. Назвать отличия гомодинного приемника сигнала от гетеродинного в ФПУ с преобразованием.
10. Что применяется для детектирования оптического сигнала с фазовой модуляцией?
Задача 5.2
Определить полосу пропускания и отношение сигнал/шум для фотоприемного устройства, содержащего интегрирующий (ИУ) или трансимпенансный (ТИУ) усилитель и фотодетектор (ЛФД или p-i-n).
6. Оптические усилители

1. Объяснить физические явления, положенные в основу оптического усиления?
2. Назвать типы усилителей, которые могут применяться в оптических системах передачи.
3. Как устроены полупроводниковые оптические усилители?
4. Как устроены и почему усиливают волоконные приборы на основе эффекта рассеяния Рамана?
5. Как устроены и действуют усилители на примесном волокне (на примере Er+)?
6. Перечислить характеристики оптических усилителей.
7. Назвать места использования оптических усилителей в составе систем передачи.
8. Виды шумов оптических усилителей и причины возникновения.
9. Назвать реальные величины коэффициентов усиления оптических усилителей (в дБ и в разах по мощности).
10. Назвать преимущества использования рамановских оптических усилителей.

Задача 6
Определить длину взаимодействия L излучения накачки в рамановском усилителе, при которой коэффициент распределенного усиления G= (по варианту табл.6.1), при соответствующей мощности накачки Pн, площади модового пятна А и рамановском коэффициенте усиления материала g (табл.6.2). Составить схему включения рамановской накачки встречно усиливаемому сигналу.

7. Линейные тракты оптических систем передачи

1. Назвать разновидности линейных трактов оптических систем передачи.
2. Почему ограничены возможности атмосферных оптических линий?
3. Что может входить в состав одноволновых оптических линейных трактов ВОСП?
4. Что может входить в состав многоволновых (многоканальных) оптических линейных трактов ВОСП-WDM?
5. Назвать назначение транспондера ВОСП-DWDM.
6. Назвать сетки частот и волн DWDM и CWDM и их отличие.
7. Перечислить требования к линейным кодам ВОСП.
8. Отличие форматов RZ и NRZ в линейных кодах ВОСП.
9. Отличие кодов 1В2В от кодов mBnB.
10. Назначение скремблированных линейных кодов.
11. В чем сущность коэффициента битовых ошибок BER или Кош?
12. С какой целью нормируют BER?
13. Какие устройства линейного тракта ВОСП способствуют увеличению BER?
14. Чем определяется длина регенерационного участка ВОСП?
15. Чем определяется величина OSNR в оптическом канале ВОСП-WDM?
16. Что подлежит расчёту или оценке при проектировании сложных линейных трактов ВОСП-WDM?
17. С какой целью в ВОСП используется оценка Q-фактора?
18. С какой целью в ВОСП используется FEC?
19. Что представляет собой оптический солитон?
20. Почему в стекловолокне может образоваться оптический солитон?
21. Почему солитон сохраняет свою форму при распространении по оптической линии на большие расстояния?
22. Какую длительность имеет оптический солитон в стекловолокне?
23. Как должны соотноситься длительность солитона и период следования солитонов?
24. Какие устройства должны входить в состав солитонной системы передачи?
25. Каким образом импульсы информационного сигнала преобразуются в солитоны?
26. Какие скорости передачи могут быть реализованы с помощью солитонов?
27. Что представляют собой фотонные кристаллы?
28. Где можно использовать фотонные кристаллы в составе ВОСП?
29. Какие технологии называют нанофотонными?
30. Какие нанофотонные компоненты можно применить в ВОСП?
Задача 7.1
Используя приложения 1 задания и конспект лекций для оптических интерфейсов аппаратуры SDH, определенных рекомендациями МСЭ-Т G.957 и G.691, определить по варианту (табл.7.1 и 7.2) предельную дальность передачи по двум типам волокон без промежуточных регенераторов, но с возможным использованием оптических усилителей. Также определить минимальное расстояние между оптическим передатчиком и оптическим приёмником заданного интерфейса для исключения перегрузки приёмника. Привести схему подключения передатчика и приёмника к волоконной линии.
Задача 7.2
Для заданного количества оптических каналов по варианту в ВОСП-DWDM и требуемого OSNR (табл.7.3) каждого канала определить минимальный допустимый уровень передачи одного канала и максимальный допустимый уровень всех каналов в стекловолокне при использовании на промежуточных станциях Mус – эрбиевых усилителей с усилением A и с коэффициентом шума NF (табл.7.4). Для скоростей передачи цифровых данных в формате NRZ 2,5 Гбит/с и 10 Гбит/с считать шум спонтанной эмиссии -58 дБ, нормированным относительно полосы 0,1 нм. Разместить указанное количество спектральных каналов в полосе C или L, или С+L в зависимости предлагаемого интервала между спектральными каналами (0,1 нм; 0,2 нм; 0,4 нм; 0,8 нм).


Размер файла: Мбайт
Фаил: Microsoft Word (.doc)
-------------------
Обратите внимание, что преподаватели часто переставляют варианты и меняют исходные данные!
Если вы хотите, чтобы работа точно соответствовала, смотрите исходные данные. Если их нет, обратитесь к продавцу или к нам в тех. поддержку.
Имейте ввиду, что согласно гарантии возврата средств, мы не возвращаем деньги если вариант окажется не тот.
-------------------

   Скачать

   Добавить в корзину


        Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Основы оптической связи / Контрольная работа Основы оптической связи
Вход в аккаунт:
Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
UnionPay СБР Ю-Money qiwi Payeer Крипто-валюты Крипто-валюты


И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках


Сайт помощи студентам, без посредников!