Теория сложностей вычислительных процессов и структур
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
Описание
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прямоугольная доска M x N (M строк и N столбцов). В левом верхнем углу находится шахматный конь, которого необходимо переместить в правый нижний угол доски. При этом конь может ходить следующим образом: 1) На две клетки вниз и одну вправо.
2) На одну клетку вниз и на две вправо.
Необходимо определить, сколько существует различных маршрутов, ведущих из левого верхнего в правый нижний угол.
Задача 3.
Сортировка "пузырьком"
В алгоритме пузырьковой сортировки осуществляется проход по списку от начала к концу, и если два соседних элемента списка стоят в неверном порядке, то они переставляются в правильном порядке. В результате минимальный элемент массива окажется на последнем месте. Повторим эту процедуру еще несколько раз, чтобы поставить все элементы на свои места.
Задача 4.
Сортировка выбором
Проходим по массиву в поисках максимального элемента. Найденный максимум меняем местами с последним элементом. Неотсортированная часть массива уменьшилась на один элемент (не включает последний элемент, куда мы переставили найденный максимум). К этой неотсортированной части применяем те же действия — находим максимум и ставим его на последнее место в неотсортированной части массива. И так продолжаем до тех пор, пока неотсортированная часть массива не уменьшится до одного элемента.
Задача 5.
Алгоритм Флойда.
Алгоритм Флойда – Уоршелла – динамический алгоритм вычисления значений кратчайших путей для каждой из вершин графа. Метод работает на взвешенных графах, с положительными и отрицательными весами ребер, но без отрицательных циклов, являясь, таким образом, более общим в сравнении с алгоритмом Дейкстры, т. к. последний не работает с отрицательными весами ребер, и к тому же классическая его реализация подразумевает определение оптимальных расстояний от одной вершины до всех остальных.
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прямоугольная доска M x N (M строк и N столбцов). В левом верхнем углу находится шахматный конь, которого необходимо переместить в правый нижний угол доски. При этом конь может ходить следующим образом: 1) На две клетки вниз и одну вправо.
2) На одну клетку вниз и на две вправо.
Необходимо определить, сколько существует различных маршрутов, ведущих из левого верхнего в правый нижний угол.
Задача 3.
Сортировка "пузырьком"
В алгоритме пузырьковой сортировки осуществляется проход по списку от начала к концу, и если два соседних элемента списка стоят в неверном порядке, то они переставляются в правильном порядке. В результате минимальный элемент массива окажется на последнем месте. Повторим эту процедуру еще несколько раз, чтобы поставить все элементы на свои места.
Задача 4.
Сортировка выбором
Проходим по массиву в поисках максимального элемента. Найденный максимум меняем местами с последним элементом. Неотсортированная часть массива уменьшилась на один элемент (не включает последний элемент, куда мы переставили найденный максимум). К этой неотсортированной части применяем те же действия — находим максимум и ставим его на последнее место в неотсортированной части массива. И так продолжаем до тех пор, пока неотсортированная часть массива не уменьшится до одного элемента.
Задача 5.
Алгоритм Флойда.
Алгоритм Флойда – Уоршелла – динамический алгоритм вычисления значений кратчайших путей для каждой из вершин графа. Метод работает на взвешенных графах, с положительными и отрицательными весами ребер, но без отрицательных циклов, являясь, таким образом, более общим в сравнении с алгоритмом Дейкстры, т. к. последний не работает с отрицательными весами ребер, и к тому же классическая его реализация подразумевает определение оптимальных расстояний от одной вершины до всех остальных.
Дополнительная информация
Год сдачи: 2020
Сибирский Государственный Университет Телекоммуникации и Информатики
Преподаватель: Рубан А.А.
Сибирский Государственный Университет Телекоммуникации и Информатики
Преподаватель: Рубан А.А.
Похожие материалы
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Владислав161
: 5 октября 2023
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
300 руб.
Теория сложности вычислительных процессов и структур 8 билет
Владислав161
: 5 октября 2023
Экзамен
По дисциплине “Теория сложности вычислительных процессов и структур”
400 руб.
Теория сложности вычислительных процессов и структур Билет 5
maksim3843
: 6 марта 2023
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
300 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
IT-STUDHELP
: 29 декабря 2021
Билет No9
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 6 21 27
2 4 14
3 7 24 52
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
380 руб.
«Теория сложности вычислительных процессов и структур». Билет №8
boeobq
: 29 ноября 2021
Требования к выполнению заданий.
Билет состоит из двух задач, решение которых необходимо осуществить «вручную», без программирования. Ответ должен быть подготовлен в трехдневный срок и выслан в адрес центра.
Задание 1.
С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
Исходные д
230 руб.
«Теория сложности вычислительных процессов и структур». Вариант №1
boeobq
: 29 ноября 2021
Задача о перемножении матриц
Задание на контрольную работу
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц М1М2М3М4М5М6М7М8М9М10М11М12. Матрицы имеют следующие размерности (см. на скиншоте)
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
Отчет содержит краткие теоретические сведения, касающиеся изучаемой темы
150 руб.
Теория сложностей вычислительных процессов и структур. Билет №6
IT-STUDHELP
: 19 ноября 2021
Билет No6
По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&6&2&7&2&2@6&0&0&1&2&5@2&0&0&4&0&7@7&1&4&0&1&7@2&2&0&1&0&0@2&5&7&7&0&0))
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор
380 руб.
Другие работы
Вирусный маркетинг. Механизм воздействия и распространённые ошибки
GnobYTEL
: 25 июля 2015
Понятие вирусного маркетинга
Развитие вирусного маркетинга в Интернете
Виды вирусного маркетинга
Механизм воздействия вирусного маркетинга
Проблема эффективности вирусного маркетинга
Распространённые ошибки вирусного маркетинга
Методы измерения эффективности
Анализ вирусного маркетинга в интернете
Экзамен по дисциплине: Информатика. 1-й семестр. Билет № 18
slava207
: 30 марта 2013
1. Перевести число 1011,1(101)2 в десятичную систему счисления.
2. Какой текст записан шестнадцатеричными кодами таблицы ASCII:
45-78-69-74?
3. Требуется представить в компьютере число 256 как целое знаковое. Какое количество разрядов нужно выделить под запись числа?
100 руб.
Ахитектура вычислительных систем. Контрольная работа. Вариант №2
AvilCorso
: 24 июля 2021
Глава 1. Способы организации и типы ВС
Вопросы
2. Какие имеются базовые виды архитектур ВС.?
Задачи
1. Самостоятельно рассмотрите указанную область применения в плане предъявляемых ею требований к ВС.
1.2. Система резервирования билетов в крупной аэро - компании, имеющей удаленные друг от друга пункты продажи.
Глава 2. Параллельная обработка информации.
Вопросы
2.1. Какие есть способы введения параллелизма в архитектуру ВС.?
2.2. Какие классы задач могут эффективно решаться с помощью ассоциатив
150 руб.
Освещение и цветовое оформление интерьера
Elfa254
: 16 марта 2014
СОДЕРЖАНИЕ
Введение
Системы и виды освещения
Нормирование освещения
Источники света и осветительные приборы
Цветовое оформление интерьера
Заключение
Список используемой литературы
ВВЕДЕНИЕ
Наибольшее количество информации об окружающем нас мире дает зрительный анализатор. В связи с этим рациональное освещение в жилых и производственных помещениях, на рабочих местах имеет важное значение для обеспечения нормальной жизнедеятельности
Свет не только обеспечивает нормальную жизнедеятельность орган
5 руб.