Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №2
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №2
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
(0 2 4 7 1)
(2 0 5 6 9)
(4 5 0 8 3)
(7 6 8 0 1)
(1 9 3 1 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 3 8 24
2 8 22
3 10 28
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
(0 2 4 7 1)
(2 0 5 6 9)
(4 5 0 8 3)
(7 6 8 0 1)
(1 9 3 1 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 3 8 24
2 8 22
3 10 28
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Хорошо
Дата оценки: 20.04.2018
Рецензия: Уважаемый
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Хорошо
Дата оценки: 20.04.2018
Рецензия: Уважаемый
Галкина Марина Юрьевна
Похожие материалы
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №2
Учеба "Под ключ"
: 12 мая 2017
Билет №2
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
(0 2 4 7 1)
(2 0 5 6 9)
(4 5 0 8 3)
(7 6 8 0 1)
(1 9 3 1 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждо
350 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2 (2018 год)
SibGOODy
: 20 ноября 2018
Билет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 5 0 1 7 1)
(5 0 2 3 2 4)
(0 2 0 5 3 1)
(1 3 5 0 4 5)
(7 2 3 4 0 3)
(1 4 1 5 3 0)
2. Имеется склад, на котором присутствует некоторый ассортимент то
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №2
Cherebas
: 24 марта 2013
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 6 9
4 5 0 8 3
7 6 8 0 1
1 9 3 1 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического
100 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Учеба "Под ключ"
: 16 июля 2025
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0 2)
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Roma967
: 11 января 2025
Билет №8
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 7 7 7 1 4)
(7 0 1 7 0 5)
(7 1 0 5 6 4)
(7 7 5 0 7 4)
(1 0 6 7 0 4)
(4 5 4 4 4 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
350 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
SibGOODy
: 21 августа 2024
Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 2 7 2 2)
(6 0 0 1 2 5)
(2 0 0 4 0 7)
(7 1 4 0 1 7)
(2 2 0 1 0 0)
(2 5 7 7 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического
350 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Roma967
: 8 января 2024
Билет №4
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
350 руб.
Другие работы
Безопасность жизнедеятельности. Зачетная работа. Билет №6
Bodibilder
: 4 июля 2019
Билет № 6
Дисциплина БЖ
1. Правовые и нормативные основы безопасности труда.
2. Зануление в электрорустановках. Определение, назначение, схема, область применения, принцип действия.
3. Решить задачу.
В электрической сети (трехфазной трехпроводной, с изолированной нейтралью) напряжением 380/220 В фаза С вследствие повреждения изоляции оказалась замкнутой на корпус незаземленной электроустановки, которой касается человек, а фаза В замкнулась на землю, при этом сопротивление замыкания оказалось
50 руб.
Контрольная работа по дисциплине: Эксплуатация и проектирование телекоммуникационных систем. Вариант 01
xtrail
: 23 июля 2024
Задача 1.
Рассчитать межстанционную нагрузку на ГТС по исходным данным из таблицы 1.
Таблица 1. Емкости опорных станций (ОС)
№ варианта: 1
ОС1: 30000
ОС2: 25000
ОС3: 10000
ОС4: 13000
ОС5: 9000
авых.КП (Эрл): 0,036
Мультиплексор: А
Задача 2.
Рассчитать емкость пучков соединительных линий на участках межстанционной связи. Расчет провести по результатам, полученным при решении задачи 1.
Задача 3.
Найти оптимальную трассу прокладки оптического кольца на сетке улиц города, используя результат расч
1400 руб.
Захист інформації в телефонних лініях
Aronitue9
: 13 ноября 2012
Захист телефонних каналів
При захисті телефонних ліній як каналів просочування інформації необхідно враховувати наступне:
1) телефонні апарати (навіть при встановленій трубці) можуть бути використаний для перехоплення акустичної мовної інформації з приміщень, в яких вони встановлені, тобто для підслуховування розмов в цих приміщеннях;
2) телефонні лінії, що проходять через приміщення, можуть використовуватися як джерела живлення акустичних закладок, встановлених в цих приміщеннях, а також для пе
5 руб.
Теория электрических цепей. О Т Ч Е Т По лабораторной работе № 2. Резонансы напряжений и токов в электрических цепях. Вариант 2
mdmatrix
: 10 апреля 2020
1. Цель работы:
Изучение электрических цепей, содержащих резисторы R, индуктивности L и емкости С при гармоническом (синусоидальном) воздействии
2. Экспериментальная часть
2.1. Схема последовательной RL – цепи (рисунки 2.1а, 2.1б).
R =120 Ом, L=2 мГн
E=10 В
55 руб.