Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №14
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A = 7
B = 6
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A = 7
B = 6
Дополнительная информация
Экзамен 07.06.2019 13.06.2019 Отлично Уважаемый Тихонов Александр Георгиевич, Мачикина Елена Павловна
Похожие материалы
Экзаменационная работа По дисциплине: Математическая логика и теория алгоритмов Билет 10
Nitros
: 28 июня 2025
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
1. Функция получена операцией суперпозиции функций , , ,
Вычислить , если , , ,
.
2. Функция получена операцией примитивной рекурсии из функций и .
Вычислить , если ,
3. Проверить правильность рассуждения (метод любой)
Если бы на стадо не напал волк, овечка Долли не сбежала бы. Если бы пастух был внимательным, на стадо не напал бы волк. Пастух был н
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет 1
SibGOODy
: 29 июля 2023
Билет №1
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A=18; B=6
Задание 1.
Функция g(x,y) получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y)
Вычислить g(A,B), если f(x,y,z)=x+y+z, f1(x,y)=3x, f2(x,y)=xy, f3(x,y)=y+5.
Задание 2.
Функция f(x,y) получена операцией примитивной рекурсии из функций g(x) и h(x,y,z).
Вычислить f(A,B), если g(x)=x+1, h(x,y,z)=x+y+z
Задание 3.
Проверить правильно
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет №7
SibGOODy
: 15 июля 2023
Билет №7
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A=21; B=1
1. Функция g(x,y) получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y)
Вычислить g(A,B), если f(x,y,z)=x+y+z, f1(x,y)=3y, f2(x,y)=x+y, f3(x,y)=y+15.
2. Функция f(x,y) получена операцией примитивной рекурсии из функций g(x) и h(x,y,z).
Вычислить f(A,B), если g(x)=1, h(x,y,z)=x+y+z
3. Проверить правильность рассуждения (метод люб
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет №15
SibGOODy
: 15 июля 2023
Билет №15
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A=20, B=9
1. Функция f(x) получена операцией примитивной рекурсии из константы C и функции h(x,y).
Вычислить f(B), если C=1, h(x,y)=x+6y
2. Функция g(x,y) получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y)
Вычислить g(A,B), если f(x,y,z)=xy+z, f1(x,y)=x, f2(x,y)=xy, f3(x,y)=5.
3. Проверить правильность рассуждения (метод любой)
Стра
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет №11
SibGOODy
: 10 июля 2023
Билет №11
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A=19, B=1
1. Функция f(x) получена операцией примитивной рекурсии из константы C и функции h(x,y).
Вычислить f(B), если C=10, h(x,y)=2x+y
2. Функция g(x,y)получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y)
Вычислить g(A,B), если f(x,y,z)=x, f1(x,y)=3x+y, f2(x,y)=xy, f3(x,y)=y+5.
3. Проверить правильность рассуждения (метод любой)
Роуте
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет №14
Roma967
: 11 марта 2023
Билет №14
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
A = 20; B = 4.
1. Функция f(x) получена операцией примитивной рекурсии из константы C и функции h(x,y).
Вычислить f(B), если C=2, h(x,y)=x+2y.
2. Функция g(x,y) получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y)
Вычислить g(A,B), если f(x,y,z)=x+yz, f1(x,y)=xmod3, f2(x,y)=xy, f3(x,y)=x+y.
3. Проверить правильность рассуждения (мето
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет №13
Roma967
: 12 июля 2019
Билет №13
1. Функция g(x,y) получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y)
Вычислить g(A,B), если f(x,y,z)=x+y, f1(x,y)=3x^(2), f2(x,y)=xy, f3(x,y)=x+y.
2. Функция f(x)получена операцией примитивной рекурсии из константы C и функции h(x,y).
Вычислить f(A), если C=5, h(x,y)=x^(2)+y^(2).
3. Проверить правильность рассуждения (метод любой)
Если человек дальтоник, то ему запрещается водить автомобиль и он не может рисовать цветные картинки. Человек рисует цветные карт
300 руб.
Экзаменационная работа по дисциплине: Математическая логика и теория алгоритмов. Билет №6
Roma967
: 12 июля 2019
Билет №6
А – день даты (от 1 до 31) отправки экзаменационного задания, В – месяц даты (от 1 до 12) отправки экзаменационного задания.
1. Функция f(x,y) получена операцией примитивной рекурсии из функций g(x) и h(x,y,z).
Вычислить f(A,B), если g(x)=x, h(x,y,z)=x+z.
2. Функция g(x,y) получена операцией суперпозиции функций f(x,y,z), f1(x,y), f2(x,y), f3(x,y).
Вычислить g(A,B), если f(x,y,z)=x+y, f1(x,y)=3x^(2), f2(x,y)=xy, f3(x,y)=x+y.
3. Проверить правильность рассуждения (метод любой).
Если
300 руб.
Другие работы
Вычислительная математика. Лабораторная работа №4. Вариант №8.
nik200511
: 13 июня 2017
Лабораторная работа No4. Численное дифференцирование
Задание к работе:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на ин
23 руб.
Задание 59. Вариант 4 - 2 модели
Чертежи по сборнику Боголюбова 2007
: 7 апреля 2023
Возможные программы для открытия данных файлов:
WinRAR (для распаковки архива *.zip или *.rar)
КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d
Любая программа для ПДФ файлов.
Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007.
Задание 59. Вариант 4 - 2 модели
По аксонометрической проекции модели построить в трех проекциях ее чертеж.
Задача 1 - с применением профильного разреза.
Задача 2 - с применением горизонтального разреза.
В состав выполненной работы вхо
150 руб.
Пухов Ю.С. Рудничный транспорт
DocentMark
: 24 октября 2011
2-е издание, перераб. и доп., Москва, «Недра», 1991 - 238 стр. Допущено Министерством металлурги СССР в качестве учебника для учащихся горно-рудных техникумов по специальности «Эксплуатация и ремонт горного электромеханического и автоматических устройств».
Общие сведения, основы расчета, эксплуатации и ремонта.
Транспортных машин.
Общие сведения о рудничном транспорте.
Основы расчета рудничного транспорта.
Основные вопросы эксплуатации, технического обслуживания и ремонта машин рудничного трансп
2 руб.
Проектирование слесарно-механического отделения на АТП города Иркутска
belyaev27
: 17 декабря 2016
Содержание
1.Общая часть
1.1.Введение
1.2.Характеристика АТП и объекта проектирования
1.3.Условные обозначения
1.4.Исходные данные для проектирования
1.5.Нормативные данные для проектирования
1.6.Значение коэффициентов проектирования
2.Расчетно-технологический раздел
2.1.Выбор и корректировка периодичности ТО-1 и ТО-2
2.2.Корректирование периодичности ТО-1 и ТО-2 на кратность среднесуточному пробегу
2.3.Корректирование пробега до капитального ремонта
2.4.Определение коэффициента технической гото
250 руб.