"Теория вероятностей и математическая статистика". часть 2-я. Вариант №03
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Задача 2
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Задача 3
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Задача 4
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
ж) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Часть II: Математическая статистика (практикум)
Выбор варианта осуществляется по двум последним цифрам пароля.
Задание 1
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Задание 2
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Задача 2
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Задача 3
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Задача 4
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
ж) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Часть II: Математическая статистика (практикум)
Выбор варианта осуществляется по двум последним цифрам пароля.
Задание 1
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Задание 2
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.
Дополнительная информация
Сдано в 2020м году. Преподаватель Галкина М.Ю.
Похожие материалы
Теория вероятности и математическая статистика (вариант 03)
stalker709
: 20 января 2018
10.3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна 0,7; для второго и третьего стрелков эти вероятности соответственно равны 0,8 и 0,9. Найти вероятность того, что: а) только один из стрелков поразит цель; б) только два стрелка поразят цель; в) все три стрелка поразят цель.
100 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №03
Студенткааа
: 16 января 2019
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0
150 руб.
Теория вероятностей и математическая статистика (часть 2-я). Билет №2
artyomemelinnn
: 18 декабря 2021
1. Среди 10 деталей две меньше нормы, а остальные в норме. Наугад берутся две детали. Какова вероятность того, что хотя бы одна из них будет в норме?
2. Вероятность искажения сигнала при приеме составляет 0,2. Найти вероятность того, что среди принятых 100 сигналов будет искажено не более 20 сигналов.
50 руб.
Теория вероятностей и математическая статистика (часть 2-я). Вариант №3
artyomemelinnn
: 18 декабря 2021
Лекция 1 3
Задача 1 (соответствует номеру 7) 3
Задача 2 (соответствует номеру 12) 4
Задача 3 (соответствует номеру 28) 4
Лекция 2 6
Задача 4 (соответствует номеру 3) 6
Задача 5 (соответствует номеру 4) 6
Лекция 3 8
Задача 6 (соответствует номеру 3) 8
Лекция 4 9
Задача 7 (соответствует номеру 3) 9
150 руб.
Теория вероятностей и математическая статистика (часть 2). Вариант №3
Marina4
: 31 октября 2021
Вариант 3
Лекция 1 Лекция 2 Лекция 3 Лекция 4
7, 12, 28 3, 4 3 3
Лекция 1
Задача 1 (соответствует номеру 7)
7. В партии из 20 изделий 4 бракованных. Найти вероятность того, что в выборке из 5 изделий не более одного бракованного.
Задача 2 (соответствует номеру 12)
12. Двое шахматистов равной силы играют 4 партии. Найти вероятность, что победил первый, если известно, что каждый выиграл хоть один раз.
Задача 3 (соответствует номеру 28)
28. Фирма нарушает закон с вероятностью 0,25. Ауди
250 руб.
Теория вероятностей и математическая статистика (часть 2) Вариант: №8
5234
: 9 августа 2019
Задача 1
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных
1200 руб.
Теория вероятностей и математическая статистика ( часть 2) вариант:3
5234
: 9 августа 2019
Билет №3.
Теоретический вопрос. Схема Бернулли и Формула Бернулли.
Практическое задание. Оцените распределение случайной величины по выборке:
1 1,138
2 0,317
3 -0,048
4 0,062
5 -6,102
6 0,021
7 0,643
8 -8,326
9 -0,431
10 0,698
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым и
220 руб.
Теория вероятностей и математическая статистика (часть 2). Билет №11
мила57
: 17 марта 2019
Билет №11.Теоретический вопрос. Центральная предельная теорема
Практическое задание. Оцените распределение случайной величины по выборке:
Xi 9.145 0.504 2.298 1.599 2.342 0.523 -0.863 0.392 -6.630 -6.715
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, прокоммен
200 руб.
Другие работы
Автоматический буровой ключ АКБ-3М2
https://vk.com/aleksey.nakonechnyy27
: 27 февраля 2016
Автоматический стационарный буровой ключ АКБ-ЗМ2 предназначен для свинчивания и развинчивания бурильных и обсадных труб в процессе спуско-подъемных операций и при наращивании бурильной колонны во время бурения нефтяных и газовых скважин
400 руб.
Общественно-политическая характеристика Китая
evelin
: 16 января 2014
ВВЕДЕНИЕ………………………………………………………….3
1 ОБЩАЯ ХАРАКТЕРИСТИКА ХОЗЯЙСТВА………………….4
1.1 Географическое положение…………………………………….4
1.2 Административная система…………………………………….5
1.3 Характеристика населения……………………………………..6
1.4 Язык……………………………………………………………...8
1.5 Религия…………………………………………………………..9
2 ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ……………………………….11
3 ПОЛИТИЧЕСКОЕ РАЗВИТИЕ………………………………….17
3.1 Тип государственного устройства…………………………….17
3.2 Форма правления. Тип избирательной системы……………...18
3.3 Национальная б
15 руб.
Ряды Фурье и их приложения
Elfa254
: 10 августа 2013
Содержание:
1. Введение.
2. Понятие ряда Фурье.
2.1. Определение коэффициентов ряда Фурье.
2.2. Интегралы от периодических функций.
3. Признаки сходимости рядов Фурье.
3.1. Примеры разложения функций в ряды Фурье.
4. Замечание о разложении периодической функции в ряд Фурье
5. Ряды Фурье для четных и нечетных функций.
6. Ряды Фурье для функций с периодом 2 l.
7. Разложение в ряд Фурье непериодической функц
Продуктивные предлоги в современном французском языке
Elfa254
: 21 июня 2013
Содержание
Введение......................................................................................3
Глава I. Продуктивный предлог и его значение..................................6
1.1. Понятие продуктивного предлога в современной лингвистике. ............6
1.2. Морфологические признаки предлогов. Виды предлогов....................8
1.3. Характер значения предлога и его функции в языке...........................9
Выводы по главе I..........................................................
5 руб.