Высшая математика (часть 2-я). Вариант №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
y^'=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒〖(x-1)〗^n/(n+1)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Задание к разделу 8, п. 8.4.
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
∫_0^0,5▒〖x ln(1+x^3 )dx 〗
Задание 5. Линии и области в комплексной плоскости
Задание к разделу 9, п. 9.1.
По заданным условиям, построить область в комплексной плоскости.
{█(|Rez|≤1@-π/4≤argz≤π@-1≤Imz≤2)
Задание 6. Функции комплексного переменного
Задание к разделу 9, п. 9.2.
Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
√(6&1-i)
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
y^'=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒〖(x-1)〗^n/(n+1)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Задание к разделу 8, п. 8.4.
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
∫_0^0,5▒〖x ln(1+x^3 )dx 〗
Задание 5. Линии и области в комплексной плоскости
Задание к разделу 9, п. 9.1.
По заданным условиям, построить область в комплексной плоскости.
{█(|Rez|≤1@-π/4≤argz≤π@-1≤Imz≤2)
Задание 6. Функции комплексного переменного
Задание к разделу 9, п. 9.2.
Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
√(6&1-i)
Дополнительная информация
Год сдачи: 2021
Учебное заведение: Сибирский Государственный Университет телекоммуникаций и информатики. Дистанционное обучение.
Преподаватель: Храмова Т.В.
Оценка: Зачет.
Учебное заведение: Сибирский Государственный Университет телекоммуникаций и информатики. Дистанционное обучение.
Преподаватель: Храмова Т.В.
Оценка: Зачет.
Похожие материалы
Высшая математика часть 2 вариант 4
batruha
: 17 апреля 2022
1. Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2. Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
3. Задание к разделу 8, п. 8.4.
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
4. Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряд
100 руб.
Высшая математика (часть 2) Вариант:4
lotos15
: 17 апреля 2020
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
Вариант 4. y ́=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Вариант 4.∑_(n=1)^∞▒((〖x-1)〗^n)/(n+1)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точн
500 руб.
Высшая математика (часть 2)
Dirol340
: 11 декабря 2022
1. Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
500 руб.
Высшая математика (часть 2-я).
IT-STUDHELP
: 6 февраля 2022
Онлайн-Тест по дисциплине:
Вопрос №1
Вычислить Ответ при необходимости округлите до тысячных.
0,067
0,315
0.555
0,417
Вопрос №2
Найдите значение выражения
Вопрос №3
Для вычисления значений функции при малых значениях x используется формула ...
Вопрос №4
Найдите с точностью до 0,001.
Вопрос №5
Сколько слагаемых ряда Маклорена для функции достаточно просуммировать для того, чтобы вычислить значение с точностью до 0,001?
1
2
3
4
Вопрос №6
Уравн
700 руб.
Высшая математика (часть 2)
aker
: 10 декабря 2019
Задание 1. Кратные интегралы
Задание к разделу 6,п. 6.5.
Однородная пластина имеет форма четырехугольника(см.рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения.
Задание к разделу 7,п. 7.2.
Найти общее решение дифференциального уравнения.
....
Задание 6. Функции комплексного переменного.
Задание к разделу 9, п. 9.2.
Вычислить значение функции комплексного переменного, результат представить в алгебраиче
100 руб.
Высшая математика.(часть 2-я) Контрольная работа. Вариант №4
Damovoy
: 4 мая 2020
1)Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2)Найти общее решение дифференциального уравнения:
3)Найти область сходимости степенного ряда.
4)Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
5)По заданным условиям, построить область в комплексной плоскости.
6)Вычислить значение функции комплексного переменного, р
180 руб.
Высшая математика (часть 2). Контрольная работа. Вариант №4
moonlight1
: 18 марта 2020
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения:
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции
100 руб.
Контрольная работа. Высшая математика.(часть 2) Вариант 4
DELSTER
: 6 января 2020
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения: y^'=y/x+sin〖y/x〗
Задание 3. Степенные ряды
Найти область сходимости степенного ряда
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0,001 значение определённого интеграла, р
250 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.