Кратные интегралы, ряды, дифференциальные уравнения, функции комплексной переменной
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Сибирский государственный университет телекоммуникаций и информатики»
(СибГУТИ
Факультет ДО
Высшая математика
«Сибирский государственный университет телекоммуникаций и информатики»
(СибГУТИ
Факультет ДО
Высшая математика
Дополнительная информация
2020 год. Вариант 8, 18, 28.
Оценка: Зачет
Оценка: Зачет
Похожие материалы
Кратные интегралы,ряды,дифференциальные уравнения,функции комплексной переменной.
Paxan84
: 27 февраля 2025
Работа без замечаний
400 руб.
Контрольная работа. вариант 5. Кратные интегралы, ряды, дифференциальные уравнения, функции комплексной переменной
dolgotanya
: 15 января 2025
Задание No1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (рисунок 1). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Рисунок 1. Однородная пластина
Задание No2. Дифференциальные уравнения.
Найти общее решение дифференциального уравнения.
y^'+2y=e^3x (1)
Задание No3. Степенные ряды.
Найти область сходимости степенного ряда.
300 руб.
ДО СИБГУТИ Контрольная работа Высшая математика-2 «Кратные интегралы, ряды, дифференциальные уравнения, функции комплексной переменной» Вариант №06
loututu
: 4 августа 2025
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла
вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения.
Вариант 6.
y′ = 2y + e ^x − x
Задание 3. Степенные ряды
Задание к разделу 8, п. 8.3.
Найти область сходимости степенного ряда.
Вариант 6.
^∞
∑ (x−2)^n /
400 руб.
Контрольная работа "Кратные интегралы, ряды, дифференциальные уравнения, функции комплексной переменной" по дисциплине Высшая математика-2. 7-й ВАРИАНТ
rostokw
: 17 ноября 2020
7 вариант
Детальное решение, со схемами и формулами.
Задание 1. Кратные интегралы
Задание к разделу 6, п. 6.5.
Однородная пластина имеет форму четырехугольника (см. рису-
нок). Указаны координаты вершин. С помощью двойного интеграла
вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения
Задание к разделу 7, п. 7.2.
Найти общее решение дифференциального уравнения.
1000 руб.
Методичка по дифференциальным уравнениям и рядам
Prapor
: 10 февраля 2009
ВВЕДЕНИЕ 3
1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 4
1.1. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ 4
1.1.1. Задача о свободном падении тела 4
1.1.2. Задача о переходном процессе в электрической цепи 5
1.1.3. Задача о радиоактивном распаде 6
1.2. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ПОНЯТИЯ 6
1.3. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ УРАВНЕНИЯ 9
1.4. ОСНОВНЫЕ КЛАССЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА 10
1.4.1. Дифференциальные уравнения с разделяющимися переменными 10
1.4.2. Однородные дифферен
Кратные интегралы и Дифференциальные уравнения - Высшая математика -2. Контрольная работа №1 5 варант ДО СибГУТИ
hornyazamaza
: 11 января 2024
Задание 1. Кратные интегралы.
Однородная пластина имеет форму четырехугольника (рисунок 1). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
100 руб.
Тройные и кратные интегралы
Elfa254
: 14 августа 2013
I. Масса неоднородного тела. Тройной интеграл.
II. Вычисление тройных интегралов.
1. Декартовы координаты.
А) Пример.
2. Цилиндрические координаты.
3. Сферические координаты.
А) Пример.
4. Применение тройных интегралов.
Теория Функции Комплексного Переменного (Вариант 3)
Администратор
: 25 декабря 2006
примеры решений типовых задач
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.