Компьютерное моделирование. Лабораторные работы №1,2,3. Общий вариант. 2021 год

Цена:
350 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon
material.view.file_icon Лабораторная 1.docx
material.view.file_icon Lab1.xmcd
material.view.file_icon
material.view.file_icon Лабораторная 2.docx
material.view.file_icon Lab2_1.xmcd
material.view.file_icon Lab2_2.xmcd
material.view.file_icon Lab2_3.xmcd
material.view.file_icon Lab2_4.xmcd
material.view.file_icon
material.view.file_icon Лабораторная 3.docx
material.view.file_icon Lab3_1.xmcd
material.view.file_icon Lab3_2.xmcd
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

В отчете по лабораторной работе необходимо представить:

титульный лист с указанием темы лабораторной работы, ФИО студента и группы, ФИО преподавателя;
цель и формулировку задачи;
для каждого этапа выполнения лабораторной работы вставить в отчет программный код, который ввели в программе для его реализации;
вставить графики, полученные в результате работы модели (созданной в программе);
сделать выводы.



Лабораторная работа 1. Дискретное преобразование Фурье

Цель работы:
Осуществить дискретизацию сигнала и выполнить дискретное преобразование Фурье.
1. Продискретизировать исходный сигнал. Провести дискретное преобразование Фурье (ДПФ) по формуле и с помощью встроенных функций Mathcad, построить графики спектров и сделать сравнения.
2. Исследовать эффект «утечки бинов» спектра.

Порядок выполнения работы:
Задание 1
1. Задать параметры сигнала G(t):
– частотами f1=1000 и f2=2000 Гц;
– частотой дискретизации fd=8000;
– количеством отсчетов N=8.
Непрерывная функция исходного сигнала имеет вид
2. Написать функцию формирования отсчетов сигнала G(t)
Для этого в новый массив записать значения функции G (n*Td), где n=0..N-1.
3. Вывести массив сфрмированных отсчетов (для удобства - в транспонированном виде), записать функцию ДПФ в тригонометрической форме (4) и вывести массив результатов преобразования.
4. Вывести графики модулей, фаз, действительной и мнимой частей ДПФ. Сделать выводы по симметрии графиков.
5. Сравнить полученные графики с теоретическими. В случае несовпадения наложить дополнительное условие принудительного «зануления» элементов массива, меньших по модулю значения 1410−.
6. Написать формулу ОДПФ (5). Вывести массив значений после ОДПФ. Сравнить массивы после ОДПФ и исходный.
7. Реализовать те же действия с использованием функций CFFT() и ICFFT(). Сравнить и сделать выводы.



Лабораторная работа No2. - Реализация КИХ фильтров в среде Mathcad

Цель работы:
1.1. Изучение принципов построения КИХ фильтров;
1.2. Получение практического навыка реализации КИХ фильтров низких и высоких частот, полосового и режекторного фильтров.
1.3 Знакомство со встроенными функциями MathCAD для реализации КИХ фильтров различных типов.
3. Выполнение лабораторной работы
3.1.Реализовать функцию и построить график суммы трех синусоид с заданными частотами: f1=10 Гц, f2=25 Гц, f3=100 Гц (рисунок 3.1).
Рисунок 3.1 – Сумма трех синусоид
3.2. Осуществить дискретизацию с частотой дискретизации, равной fd=500 Гц и количеством отсчетов равным Ne=200.
3.3. Реализовать ДПФ с помощью встроенной функции CFFT(), построить график модулей отсчетов ДПФ входного сигнала (рисунок 3.2).
Рисунок 3.2 – Спектр исходного сигнала
3.4. Записать функцию для импульсной характеристики идеального ФНЧ (см. таблицу 2.1), предварительно задав относительную частоту среза (0< fcp< 0.5). Задать количество отсчетов импульсной характеристики (N=51) и сформировать массив ИХ, обеспечив сдвиг характеристики на NN−12, чтобы отсчет с максимальным отрицательным индексом функции стал нулевым элементом массива (Рисунок 3.3).
3.5. Построить АЧХ ФНЧ, выполнив ДПФ массива импульсной характеристики (рисунок 3.4).
Рисунок 3.4 – АЧХ ФНЧ до сглаживания
3.6. Произвести взвешивание импульсной характеристики с использованием окна Хемминга (рисунок 3.5, таблица 2.2).
Рисунок 3.5 – Вид окна Хемминга
3.7. Построить АЧХ фильтра со сглаженными характеристиками. Сравнить с АЧХ из п. 3.5. Сделать вывод о назначении окон (рисунок 3.6).
3.8. Вывести АЧХ фильтра и спектральные составляющие исходного сигнала на одном графике. Подобрать частоту среза fcp для выделения гармоники с частотой 10 Гц (рисунок 3.7).
Рисунок 3.7 – Выделение гармоники с частотой 10 Гц
3.9. Выполнить свертку ИХ фильтра с отсчетами исходного сигнала.
3.10. Вывести получившийся сигнал после свертки и исходный на одном графике, учитывая задержку фильтра. Сделать вывод о корректности работы фильтра (рисунок 3.8).
Рисунок 3.8 – Выходной сигнал
3.11. Реализовать фильтр нижних частот и произвести свертку с помощью встроенных функций lowpass и convol. Сравнить полученные результаты.
3.12. Используя пункты 3.1-3.7, реализовать фильтр верхних частот, произвести сглаживание характеристик окном Хемминга. Вид импульсной характеристики и амплитудно-частотой характеристики фильтра верхних частот представлены на рисунке 3.9 и 3.10 соответственно.
3.13. Используя пункты 3.8-3.10 произвести подбор частоты среза для выделения гармоники с частотой 100 Гц, выполнить свертку. Выделение гармоники и вид выходного сигнала представлены на рисунке 3.11 и 3.12 соответственно.
Рисунок 3.11 – Выделение гармоники с частотой 100 Гц
Рисунок 3.12 – Выходной сигнал
3.14. Реализовать фильтр верхних частот и произвести свертку с помощью встроенных функций highpass и convol. Сравнить полученные результаты.
3.15. Используя пункты 3.1-3.7, реализовать полосовой фильтр, произвести сглаживание характеристик окном Хемминга. Вид импульсной характеристики и амплитудно-частотой характеристики полосового фильтра представлены на рисунке 3.13 и 3.14 соответственно.
Рисунок 3.13 – Вид ИХ ПФ
Рисунок 3.14 – АЧХ ПФ до сглаживания
3.16 Используя пункты 3.8-3.10 произвести подбор верхней и нижней частот для выделения гармоники с частотой 25 Гц, выполнить свертку. Выделение гармоники и вид выходного сигнала представлены на рисунке 3.15 и 3.16 соответственно.
Рисунок 3.15 – Выделение гармоники с частотой 25 Гц
встроенных функций bandpass и convol. Сравнить полученные результаты.
3.18. Реализовать режекторный фильтр, с помощью встроенной функции bandstop, вырезающий гармонику с частотой 25 Гц, и произвести свертку с помощью функции convol. Вид амплитудно-частотной характеристики режекторного фильтра, вырезание гармоники и выходной сигнал представлены на рисунках 3.17-3.19 соответственно.
Рисунок 3.17 – АЧХ ПФ после сглаживания



Лабораторная работа No3. - Универсальный квадратурный модулятор. Формирование QPSK, 8-PSK и KAM-16 сигналов.

Цель работы:
Программная реализация и исследование модуляторов QPSK, 8-PSK и KAM-16 в среде Mathcad.

Задание 1.
Схема общего универсального модулятора
1. Визуализировать сгенерированный массив на оси времени
2. Написать программу формирования квадратур QPSK – модуляции
3. Вывести матрицу квадратур QPSK – модуляции
4. Написать непрерывную функцию QPSK – модулятора (смотри выражение (1) и рисунки 4 и 5)
5. Визуализировать модулированный массив на одном графике с исходным массивом.
6. Вывести несколько первых значений исходного массива, матрицу квадратур и график модулированного сигнала (Примеры на рис. 7 – 9).

Задание 2.
1. При тех же исходных данных написать программу формирователя квадратур модуляции KAM-16.
2. Вывести матрицу сформированных квадратур KAM-16 – модуляции.
3. Написать непрерывную функцию модулятора KAM-16 и вывести модулированный сигнал на график. Пример показан на рисунке 12.
Визуализировать массивы квадратур на одном графике с исходным массивом.

Дополнительная информация

Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Компьютерное моделирование
Вид работы: Лабораторная работа 1
Оценка: Зачет
Дата оценки: 03.09.2021
Рецензия: .............................................,

Мелентьев Олег Геннадьевич


Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Компьютерное моделирование
Вид работы: Лабораторная работа 2
Оценка: Зачет
Дата оценки: 06.09.2021
Рецензия: .............................................,

Мелентьев Олег Геннадьевич


Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Компьютерное моделирование
Вид работы: Лабораторная работа 3
Оценка: Зачет
Дата оценки: 10.09.2021
Рецензия: .............................................,

Мелентьев Олег Геннадьевич
Контрольная работа по дисциплине: Компьютерное моделирование. Общий вариант. 2021 год
Моделирование системы передачи с BPSK модулятором и корреляционным детектором Цель работы: реализовать программную модель системы передачи с BPSK модулятором и корреляционным детектором, структурная схема которой показана на рисунке 1. Исследовать работу системы в условиях нормального шума. (Рекомендуемая среда Mathcad. Можно реализовать модель в С/С++ и построить графики в любом приложении) Исходные данные Ne – длина исходного двоичного информационного массива; Fo = 10 Гц – частота несущего
User SibGUTI2 : 25 сентября 2021
400 руб.
Контрольная работа по дисциплине: Компьютерное моделирование. Общий вариант. 2021 год
Компьютерное моделирование. Вариант №04. 2021 год.
Задание на контрольную работу Заданы модели систем связи с: • битовой скоростью передачи Rb, Мбит/с; • модуляцией 4, 8 PSK, 16, 64, 256 QAM; • фильтром с коэффициентом сглаживания ROF; • каналом с шумом AWGN с отношением Eb/N0, dB. Варианты задания (по двум последним цифрам пароля) 4 0.7 4 PSK 256-QAM 0.5 0.9 Зачет без замечаний 06.11.2021 проверил Носов Владимир Иванович СИБГУТИ
User icetank2020 : 5 декабря 2021
900 руб.
Компьютерное моделирование. Вариант №04. 2021 год.
Компьютерное моделирование. Экзамен. Билет №5. 2021 год
Экзаменационный билет № 5 Факультет АЭС Семестр 5 Дисциплина Компьютерное моделирование 1. Комплексные числа. Формы представления комплексных чисел. Преобразование Эйлера. Понятие положительных и отрицательных частот. 2. Шумы и искажения. Способы моделирования Гауссовского шума фазовых и частотных рассогласований 3. Оценить минимальное количество отсчетов прореживающего КИХ фильтра
User SibGUTI2 : 28 сентября 2021
400 руб.
Компьютерное моделирование. Экзамен. Билет №5. 2021 год
Лабораторная работа №1 по дисциплине: Технологии транспортных сетей. Общий вариант. 2021 год
Лабораторно-практическое занятие 1 Изучение концепции мониторинга и эксплуатации сетей SDH Цель работы: Целью данного лабораторно-практического занятия является изучение концепции мониторинга и эксплуатации сетей SDH на основе индикаций аварий и неисправностей в данной сети. В процессе лабораторно-практического занятия необходимо ознакомиться с теоретическими сведениями, приведенными примерами, а также пройти проверочный тест. Методические указания 1 Для запуска лабораторно-практического зан
User SibGUTI2 : 11 сентября 2021
300 руб.
Лабораторная работа №1 по дисциплине: Технологии транспортных сетей. Общий вариант. 2021 год
Лабораторная работа 1. Компьютерное моделирование
Цель: осуществить дискретизацию сигнала и выполнить дискретное преобразование Фурье. 1. Продискретизировать исходный сигнал. Провести дискретное преобразование Фурье (ДПФ) по формуле и с помощью встроенных функций Mathcad, построить графики спектров и сделать сравнения. 2. Исследовать эффект «утечки бинов» спектра.
User Ne_dasha : 18 февраля 2025
150 руб.
Лабораторная работа №1 по дисциплине: «Компьютерное моделирование» Компьютерное моделирование. Вариант общий + отчет Mathcad (2023)
Цель: Осуществить дискретизацию сигнала и выполнить дискретное преобразование Фурье. 1. Продискретизировать исходный сигнал. Провести дискретное преобразование Фурье (ДПФ) по формуле и с помощью встроенных функций Mathcad, построить графики спектров и сделать сравнения. 2. Исследовать эффект «утечки бинов» спектра. Порядок выполнения работы: Задание 1 1. Задать параметры сигнала G(t): – частотами f1=1000 и f2=2000 Гц; – частотой дискретизации fd=8000; – количеством отсчетов N=8. 2. Написать фун
User LiVolk : 24 мая 2023
130 руб.
Лабораторная работа №1 по дисциплине: «Компьютерное моделирование» Компьютерное моделирование. Вариант общий + отчет Mathcad (2023)
Лабораторные работы №1-3 по дисциплине: Компьютерное моделирование. Вариант общий
Лабораторная работа 1 По дисциплине: Компьютерное моделирование По теме «Дискретное преобразование Фурье» 1. Цель работы Осуществить дискретизацию сигнала и выполнить дискретное преобразование Фурье. 2. Постановка задачи 1. Продискретизировать исходный сигнал. Провести дискретное преобразование Фурье (ДПФ) по формуле и с помощью встроенных функций Mathcad, построить графики спектров и сделать сравнения. 2. Исследовать эффект «утечки бинов» спектра. Лабораторная работа 2 По дисциплине: Компьют
User teacher-sib : 11 марта 2021
600 руб.
promo
Методы и средства проектирования информационных систем и технологий (все ответы на тест Синергия МТИ МосАП)
Методы и средства проектирования информационных систем и технологий Ответы на все 52 вопроса Результат 80 ... 97 баллов из 100 Методы и средства проектирования информационных систем и технологий 1. Важно!. Информация по изучению курса 2. Тема 1. Основы организации проектирования информационных систем 3. Тема 2. Жизненный цикл ПО. Модели жизненного цикла ПО 4. Тема 3. Технология проектирования ИС 5. Тема 4. Состав и содержание работ по этапам жизненного цикла ПО. Проектная документация 6. Тема 5.
User alehaivanov : 12 марта 2023
125 руб.
Контрольная работа по дисциплине "История России" ТЕМА XII. ЭПОХА ВЕЛИКИХ РЕФОРМ
Описание указано в кратце по первым словам вопросов XII. ЭПОХА ВЕЛИКИХ РЕФОРМ ЧТО ОЗНАЧАЮТ ЭТИ ПОНЯТИЯ? Анархизм, волостной старшина, волостной сход, всеобщая воинская повинности... КОМУ ПРИНАДЛЕЖАТ ЭТИ ИМЕНА? М.А.Бакунин, Бахрушины, Г.П.Боткин, А.М.Горчаков,..... ЧТО ОЗНАЧАЮТ ЭТИ НАЗВАНИЯ, С КАКИМИ СОБЫТИЯМИ СВЯЗАНЫ СООТВЕТСТВУЮЩИЕ ГЕОГРАФИЧЕСКИЕ ПУНКТЫ? "Ад" "Барским крестьянам от их доброжелателей поклон", Берлинский конгресс..... НАЗОВИТЕ ТЕРМИНЫ, ОБОЗНАЧАЮЩИЕ СЛЕДУЮЩИЕ ИСТОРИЧЕСКИЕ Я
User Baltika : 30 ноября 2024
200 руб.
Контрольная работа по дисциплине "История России" ТЕМА XII. ЭПОХА ВЕЛИКИХ РЕФОРМ
Механизация технологического процесса уборки навоза на молочной ферме КРС с модернизацией установки ТНС-160
Анализируя результаты выполненного курсового проекта по механизации технологического процесса уборки навоза на молочной ферме КРС можно сделать вывод об эффективности предлагаемого проекта. В проекте, кроме того, разработаны мероприятия по охране труда и технике безопасности. Скребковый навозоуборочный транспортер ТСН – 2,0Б предназначен для уборки навоза из животноводческих помещений и погрузки его в транспортные средства. Он состоит из горизонтального и наклонного транспортеров, каждый из
User maobit : 10 апреля 2018
690 руб.
Механизация технологического процесса уборки навоза на молочной ферме КРС с модернизацией установки ТНС-160 promo
Оптимизирующие компиляторы. Лабораторные работы №1-3. Вариант №1.
ЛАБОРАТОРНАЯ РАБОТА №1 «ОПРЕДЕЛЕНИЕ ВРЕМЕНИ РАБОТЫ ПРИКЛАДНЫХ ПРОГРАММ» ЗАДАНИЕ К ЛАБОРАТОРНОЙ РАБОТЕ 1. Написать программу на языке C или C++, которая реализует выбранный алгоритм из задания. 2. Проверить правильность работы программы на нескольких тестовых наборах входных данных. 3. Выбрать размерность массива N такой, чтобы время работы программы более медленным алгоритмом было порядка 5 секунд. 4. Оценить (на 5-10 тестах) относительное быстродействие алгоритмов. № Алгоритм 1 Алгоритм 2 1
User nik200511 : 12 февраля 2020
960 руб.
up Наверх