Математическое моделирование телекоммуникационных устройств и систем. Вариант №21
Состав работы
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Методические рекомендации по изучению дисциплины «Математическое моделирование телекоммуникационных устройств и систем»
Проверил: Лебедянцев В.В.
Необходимые теоретические сведения по данной дисциплине изложены в учебном пособии [1]. При необходимости расширить свои знания по разделам дисциплины можно воспользоваться обширной информацией, имеющейся в интернете (смотри список рекомендованной литературы).
Контроль усвоения учебного материала осуществляется посредством контрольной работы.
В контрольной работе необходимо решить 2 задачи и раскрыть выбранную тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
НОМЕР ВАРИАНТА определяется последними цифрами пароля.
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле S(i) = 1 + No варианта. Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
No отсчета 1 2 3 4 5 6 7
Величина отсчета 0,147 * А 0,5 * А 0,854 * А 1 * А 0,854 * А 0,5 * А 0,147 * А
А = (1+No варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
Приведем простейший пример. Пусть входной сигнал задан двумя временными отсчетами S1 = 1 и S2 = 1. Импульсная реакция так же задана двумя отсчетами g1 = 0,5 и g2 = 0,2. Матричный аналог интеграла свертки будет иметь вид |(|1 1|)|×‖(0.5&0.2 0@0& 0.5 0.2)‖=|(|0.5 0.7 0.2|)|.
Далее необходимо рассчитать энергии входного и выходного сигналов, как сумму квадратов их временных отсчетов.
Наконец, рассчитывается коэффициент энергетической эффективности сигнала как отношение его энергии на выходе канала к энергии на входе канала.
Расчеты выполняются для каждого варианта сигнала. Очевидно, что оптимальным по энергетическому критерию сигналом будет тот, коэффициент энергетической эффективности которого больше.
Эта задача иллюстрирует возможности численных методов моделирования для решения одной из оптимизационных задач теории связи. Добавим, что поиск наилучшего из всех возможных сигналов по критерию энергетической эффективности осуществляется на базе поиска собственных векторов матрицы оператора канала. Поэтому лучший сигнал, найденный при решении этой задачи, вполне может оказаться не самым лучшим из всех возможных сигналов.
Вторая задача предназначена для проверки знаний и умений организации эксперимента по исследованию помехоустойчивости системы передачи дискретных сообщений методом имитационного статистического моделирования.
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0,1+0,1×Noварианта.
Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля. Раскрыть тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
В следующей таблице приведены варианты заданий для выполнения теоретической части контрольной работы.
Контрольный вопрос: "Математические модели непрерывных каналов"
Сдана в мае 2021г. Зачет
Проверил: Лебедянцев В.В.
Необходимые теоретические сведения по данной дисциплине изложены в учебном пособии [1]. При необходимости расширить свои знания по разделам дисциплины можно воспользоваться обширной информацией, имеющейся в интернете (смотри список рекомендованной литературы).
Контроль усвоения учебного материала осуществляется посредством контрольной работы.
В контрольной работе необходимо решить 2 задачи и раскрыть выбранную тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
НОМЕР ВАРИАНТА определяется последними цифрами пароля.
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле S(i) = 1 + No варианта. Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
No отсчета 1 2 3 4 5 6 7
Величина отсчета 0,147 * А 0,5 * А 0,854 * А 1 * А 0,854 * А 0,5 * А 0,147 * А
А = (1+No варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
Приведем простейший пример. Пусть входной сигнал задан двумя временными отсчетами S1 = 1 и S2 = 1. Импульсная реакция так же задана двумя отсчетами g1 = 0,5 и g2 = 0,2. Матричный аналог интеграла свертки будет иметь вид |(|1 1|)|×‖(0.5&0.2 0@0& 0.5 0.2)‖=|(|0.5 0.7 0.2|)|.
Далее необходимо рассчитать энергии входного и выходного сигналов, как сумму квадратов их временных отсчетов.
Наконец, рассчитывается коэффициент энергетической эффективности сигнала как отношение его энергии на выходе канала к энергии на входе канала.
Расчеты выполняются для каждого варианта сигнала. Очевидно, что оптимальным по энергетическому критерию сигналом будет тот, коэффициент энергетической эффективности которого больше.
Эта задача иллюстрирует возможности численных методов моделирования для решения одной из оптимизационных задач теории связи. Добавим, что поиск наилучшего из всех возможных сигналов по критерию энергетической эффективности осуществляется на базе поиска собственных векторов матрицы оператора канала. Поэтому лучший сигнал, найденный при решении этой задачи, вполне может оказаться не самым лучшим из всех возможных сигналов.
Вторая задача предназначена для проверки знаний и умений организации эксперимента по исследованию помехоустойчивости системы передачи дискретных сообщений методом имитационного статистического моделирования.
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0,1+0,1×Noварианта.
Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля. Раскрыть тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
В следующей таблице приведены варианты заданий для выполнения теоретической части контрольной работы.
Контрольный вопрос: "Математические модели непрерывных каналов"
Сдана в мае 2021г. Зачет
Похожие материалы
Математическое моделирование телекоммуникационных устройств и систем
Dirol340
: 25 января 2021
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация дл
330 руб.
Математическое моделирование телекоммуникационных устройств и систем. В-2
banderas0876
: 27 мая 2023
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Задача №2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия.
3. Математические
250 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
_____________________________________
300 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
____________________________________.
300 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
______________________________________
300 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
__________________________________________
300 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
_________________________________
300 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
_______________________________________
300 руб.
Другие работы
Лабораторная работа №1 по дисциплине: Теория электрических цепей.
Amor
: 19 октября 2013
1. Цель работы
Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка, содержащих сопротивление и емкость либо сопротивление и индуктивность. В лабораторной работе необходимо исследовать зависимости напряжения uC(t) и тока iC(t) в емкости в RC-цепи при заряде и разряде конденсатора, а также зависимости тока iL(t) и напряжения uL(t) на индуктивности при подключении и отключении источника постоянного напряжения.
Переходные процессы в RC-цепя
300 руб.
Пакеты прикладных программ для экономистов.Лабораторная работа №2
nastia9809
: 7 мая 2015
Работа со списками. Создание автоматических промежуточных отчетов и сводных таблиц
Цель работы: Приобрести навыки использования возможностей MS Excel для анализа данных в списках.
Задание к лабораторной работе:
1. Изучите материалы лекции 5 и решите приведенные примеры.
2. Выполните контрольное задание на новом листе или в отдельной книге MS Excel.
Контрольное задание
Создайте список из 25 записей, содержащий сведения о вкладах, например:
ФИО Отделение банка Тип вклада Дата открытия счета С
60 руб.
Микропроцессорная техника в системах связи Лабораторная работа №1,№2,№3 вариант №9
Hermes
: 16 апреля 2021
Лабораторная работа №1. Часть1.
1. Цель работы
1.1. Изучить особенности работы параллельных портов микроконтроллера.
1.2. Изучить схемы подключения светодиодов к цифровым микросхемам.
1.3. Научиться управлять светодиодами при помощи программы.
1.4. Научиться управлять цифровыми индикаторами.
1.5. Научиться загружать программы в микроконтроллер.
1.6. Изучить способы отладки программ на лабораторном стенде ЛЭСО1.
Предпоследняя цифра кода студента Номера светодиодов, которые необходимо зажечь на ст
400 руб.
Ломанный разрез. Вариант 7 ЧЕРТЕЖ
coolns
: 13 ноября 2025
Ломанный разрез. Вариант 7 ЧЕРТЕЖ
ГРАФИЧЕСКАЯ РАБОТА № 7
ВЫПОЛНЕНИЕ ЛОМАННОГО РАЗРЕЗА
Цель работы: 1) изучить основные правила и приемы выполнения ломанного разреза; 2) сформировать навыки проецирования, нанесения размеров и чтения чертежей.
Чертеж выполнен на формате А3 + 3d модель (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
150 руб.
Комментарии (1)
В задаче №1 использованы обе цифры для выполнения расчетов. Когда по условию указано "НОМЕР ВАРИАНТА определяется последней цифрой пароля." То есть в формуле должно было быть А = (1+1 варианта).
В задаче №2 выбрана тема №2, но по условию задания "Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля". То есть должна была выбрана тема №1.