Алгоритмы и вычислительные методы оптимизации. Вариант №02
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→min
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Номер варианта а b с а1 b1 с1 а2 b2 с2 p1 p2 Номера вопросов для защиты
2 12 33 20 5 5 2 1 4 5 11 1 3,8,13,15
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→min
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Номер варианта а b с а1 b1 с1 а2 b2 с2 p1 p2 Номера вопросов для защиты
2 12 33 20 5 5 2 1 4 5 11 1 3,8,13,15
Дополнительная информация
Оценка: отлично
Дата оценки: 06.02.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 06.02.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Алгоритмы и вычислительные методы оптимизации
Anza
: 22 марта 2021
Лабораторная работа №1
Решения систем линейных уравнений методом Жордана-Гаусса
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
Вариант выбирается по последней цифре пароля.
100 руб.
Алгоритмы и вычислительные методы оптимизации
snapsik
: 8 марта 2021
Курсовая работа
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1. Перейти к к
200 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №06
holm4enko87
: 10 декабря 2024
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2)=p_1 x_1+p_2 x_2→min
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
Составить д
800 руб.
Алгоритмы и вычислительные методы оптимизации(Вариант 3)
Роман16
: 30 июня 2022
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
− файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, результаты выполнения аналитических расчетов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), список используемой литературы и интернет-источников;
− файл с исходным текстом программы (программу можно писать на любом языке пр
400 руб.
Алгоритмы и вычислительные методы оптимизации. Билет №5
IT-STUDHELP
: 6 февраля 2022
Билет No5
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Найти целочисленное решение задачи линейного программирования методом Гомори.
Z=3x_1+x_2→max
{(3x_1+2x_2≤8@x_1+4x_2≤10@x_1,x_2≥0)
Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры i) для оптимальной точки (8;3) задачи нелинейного программирования.
Z=(x_1-10)^2+(x_2-2)^2→min
{(x_1-4x_2≤-4@x_1+x
340 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №6
Сергей38
: 13 января 2022
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=px_1+px_2→min
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом одним из перечисленных способов (в соответствии с последним столбцом приведенной ниже таблицы):
− симплекс-методом, используя в качестве начальной угловой точки опорное решение с указанными в задании базисными переменными, найденное метод
600 руб.
«Алгоритмы и вычислительные методы оптимизации». Билет №5
boeobq
: 28 ноября 2021
Задания билета:
Требование к выполнению заданий:
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Задание 1.
Найти целочисленное решение задачи линейного программирования методом Гомори.
Задание 2.
Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры Лямбдаi) для оптимальной точки (8;3) задачи нелинейного программирования.
Полностью тексты заданий пре
270 руб.
Алгоритмы и вычислительные методы оптимизации. Билет №12
IT-STUDHELP
: 23 ноября 2021
Билет No12
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Составить двойственную задачу и решить ее графически.
Z=3x_1+6x_2+8x_3+4x_4→max
{(-2x_1-2x_2-2x_3-x_4≥-7@-x_1+x_2+2x_3≤-3@x_1,x_2,x_3,x_4≥0)
Найти целочисленное решение задачи линейного программирования методом Гомори.
Z=-9x_1-11x_2→min
{(4x_1+3x_2≤10@x_1+3x_2≤8@x_1,x_2≥0)
340 руб.
Другие работы
Эконометрика 5 задач
vladslad
: 27 ноября 2018
Задача 1
Пусть имеется следующая модель регрессии, характеризующая зависимость y от x:
y = 2 + 8x.
Известно также, что R2= 0,25; n = 14. Проведите проверку статистической значимости коэффициента регрессии b при уровне α = 0.01, если в этом случае tкрит = 3,05.
Задача 2
Зависимость y от x описывается следующим уравнением регрессии, построен-ным по 12 наблюдениям:
y = 2,2 + 0,4x.
При этом доля остаточной вариации в общей вариации составляет 10%.
Оцените коэффициент детерминации и его статистическ
200 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 8 Вариант 09
Z24
: 19 декабря 2025
Водяной пар с начальным давлением р1=5 МПа и степенью сухости х1=0,95 поступает в пароперегреватель, где его температура повышается на Δt; после перегревателя пар изоэнтропно (адиабатно) расширяется в турбине до давления p2. Пользуясь h-s — диаграммой для водяного пара (приложение Д, рисунок Д1), определить:
— количество теплоты (на 1 кг пара), подведенной к нему в пароперегревателе;
— работу цикла Ренкина и степень сухости пара х2 в конце расширения;
— термический КПД цикла;
— работ
180 руб.
Экономическое регулирование охраны окружающей среды
alfFRED
: 3 сентября 2013
Многие специалисты, в том числе и юристы, в развитых странах считают экологические проблемы по сути проблемами экономическими. Такая позиция согласуется с тем, что в настоящее время во многих странах и особенно в США наблюдается ослабление административного регулирования экономики. Экономические методы адресны, однозначно определяют требования к управляемому объекту, однако в отличие от административных команд учитывают, что объекты управления сознательно ставят перед собой цели и столь же созна
10 руб.
Лабораторная работа №2 по дисциплине: Отказоустойчивые вычислительные системы. Вариант №4
IT-STUDHELP
: 16 июня 2019
ЛАБОРОТОРНАЯ №2. СОЗДАНИЕ ПАРАЛЛЕЛЬНЫХ ОБЛАСТЕЙ В OpenMP
Задание
Цель лабораторной работы – рассмотреть условия выполнения параллельных областей. Распределение выполняемой программой работы между главной нитью и остальными.
Исходные тексты программ
Упражнение 4. Напишите программу скалярного произведения двух векторов. При инициализации параллельной области явно укажите количество используемых нитей 2 или 4.
Упражнение 5. Программу упражнения 4 измените так, чтобы вывод результата скалярного п
480 руб.