Математическое моделирование телекоммуникационных устройств и систем. Контрольная работа. Вариант 3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле S(i) = 1 + No варианта. Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
No отсчета 1 2 3 4 5 6 7
Величина отсчета 0,147 * А 0,5 * А 0,854 * А 1 * А 0,854 * А 0,5 * А 0,147 * А
А = (1+No варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
Приведем простейший пример. Пусть входной сигнал задан двумя временными отсчетами S1 = 1 и S2 = 1. Импульсная реакция так же задана двумя отсчетами g1 = 0,5 и g2 = 0,2. Матричный аналог интеграла свертки будет иметь вид |(|1 1|)|×‖(0.5&0.2 0@0& 0.5 0.2)‖=|(|0.5 0.7 0.2|)|.
Далее необходимо рассчитать энергии входного и выходного сигналов, как сумму квадратов их временных отсчетов.
Наконец, рассчитывается коэффициент энергетической эффективности сигнала как отношение его энергии на выходе канала к энергии на входе канала.
Расчеты выполняются для каждого варианта сигнала. Очевидно, что оптимальным по энергетическому критерию сигналом будет тот, коэффициент энергетической эффективности которого больше.
Эта задача иллюстрирует возможности численных методов моделирования для решения одной из оптимизационных задач теории связи. Добавим, что поиск наилучшего из всех возможных сигналов по критерию энергетической эффективности осуществляется на базе поиска собственных векторов матрицы оператора канала. Поэтому лучший сигнал, найденный при решении этой задачи, вполне может оказаться не самым лучшим из всех возможных сигналов.
Вторая задача предназначена для проверки знаний и умений организации эксперимента по исследованию помехоустойчивости системы передачи дискретных сообщений методом имитационного статистического моделирования.
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0,1+0,1×Noварианта.
Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля. Раскрыть тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
В следующей таблице приведены варианты заданий для выполнения теоретической части контрольной работы.
Вариант
по последней цифре пароля Тема контрольной работы
Вариант 3 Математические основы оптимизации сигналов для телекоммуникационных систем
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле S(i) = 1 + No варианта. Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
No отсчета 1 2 3 4 5 6 7
Величина отсчета 0,147 * А 0,5 * А 0,854 * А 1 * А 0,854 * А 0,5 * А 0,147 * А
А = (1+No варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
Приведем простейший пример. Пусть входной сигнал задан двумя временными отсчетами S1 = 1 и S2 = 1. Импульсная реакция так же задана двумя отсчетами g1 = 0,5 и g2 = 0,2. Матричный аналог интеграла свертки будет иметь вид |(|1 1|)|×‖(0.5&0.2 0@0& 0.5 0.2)‖=|(|0.5 0.7 0.2|)|.
Далее необходимо рассчитать энергии входного и выходного сигналов, как сумму квадратов их временных отсчетов.
Наконец, рассчитывается коэффициент энергетической эффективности сигнала как отношение его энергии на выходе канала к энергии на входе канала.
Расчеты выполняются для каждого варианта сигнала. Очевидно, что оптимальным по энергетическому критерию сигналом будет тот, коэффициент энергетической эффективности которого больше.
Эта задача иллюстрирует возможности численных методов моделирования для решения одной из оптимизационных задач теории связи. Добавим, что поиск наилучшего из всех возможных сигналов по критерию энергетической эффективности осуществляется на базе поиска собственных векторов матрицы оператора канала. Поэтому лучший сигнал, найденный при решении этой задачи, вполне может оказаться не самым лучшим из всех возможных сигналов.
Вторая задача предназначена для проверки знаний и умений организации эксперимента по исследованию помехоустойчивости системы передачи дискретных сообщений методом имитационного статистического моделирования.
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0,1+0,1×Noварианта.
Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
Теоретическая часть контрольной работы: тема выбирается согласно варианта, определяемого по последней цифре пароля. Раскрыть тему на 10-12 страницах машинописного текста, сделать выводы и указать использованные источники. Желательно в контрольной работе упомянуть о последних достижениях по выбранной теме.
В следующей таблице приведены варианты заданий для выполнения теоретической части контрольной работы.
Вариант
по последней цифре пароля Тема контрольной работы
Вариант 3 Математические основы оптимизации сигналов для телекоммуникационных систем
Дополнительная информация
Зачёт.
Похожие материалы
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №3
IT-STUDHELP
: 20 мая 2023
Вариант №3
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет
700 руб.
Математическое моделирование телекоммуникационных устройств и систем
Dirol340
: 25 января 2021
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация дл
330 руб.
Математическое моделирование телекоммуникационных устройств и систем. В-2
banderas0876
: 27 мая 2023
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Задача №2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия.
3. Математические
250 руб.
Математическое моделирование телекоммуникационных устройств и систем. Контрольная работа. Вариант 2
aleshin
: 13 октября 2022
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух ва
182 руб.
Математическое моделирование телекоммуникационных устройств и систем: Контрольная работа, вариант №2
Garrrik
: 27 июля 2020
Первая задача: для проверки умений использования численных методов моделирования необходимо решить элементарную оптимизационную задачу по выбору наилучшего сигнала (из двух вариантов) для канала на основе кабельной линии.
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Из двух в
600 руб.
Математическое моделирование телекоммуникационных устройств и систем. Вариант №21
ToPool
: 3 января 2022
Методические рекомендации по изучению дисциплины «Математическое моделирование телекоммуникационных устройств и систем»
Проверил: Лебедянцев В.В.
Необходимые теоретические сведения по данной дисциплине изложены в учебном пособии [1]. При необходимости расширить свои знания по разделам дисциплины можно воспользоваться обширной информацией, имеющейся в интернете (смотри список рекомендованной литературы).
Контроль усвоения учебного материала осуществляется посредством контрольной работы.
В контр
299 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
____________________________________.
300 руб.
Математическое моделирование телекоммуникационных устройств и систем. Экзамен. Тест.
Магистр
: 24 апреля 2021
Математическое моделированиеТКУ и ТКС
ответов 20 из 20
Результат 100%
______________________________________
300 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.