Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №01
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант No01
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отсчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле:
S1(i) = 1 + No варианта,
N = 1, S1(i) = 2.
Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
Таблица 2 – Временные отсчеты сигналов S1 и S2
No отсчета 1 2 3 4 5 6 7
Сигнал Sвх1(i)
Прямоугольный импульс 2 2 2 2 2 2 2
Сигнал Sвх2(i)
Приподнятый косинус 0,147*А 0,5*А 0,854*А 1*А 0,854*А 0,5*А 0,147*А
0,294 1 1,708 2 1,708 1 0,294
А = (1+No варианта) = 1 + 1 = 2
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением. Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Задача 2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Таблица 3 - Исходные данные для расчета
Параметр Значение
Вариант N 1
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний p_ош 0,001
Величина относительного доверительного интервала 〖ε_p〗^* = 0,1+0,1*N 0,2
Величина доверительной вероятности P 0,9
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Вопрос 3
Вариант 1. Математические методы эффективного (безызбыточного) кодирования источников дискретных сообщений
=============================================
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отсчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле:
S1(i) = 1 + No варианта,
N = 1, S1(i) = 2.
Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
Таблица 2 – Временные отсчеты сигналов S1 и S2
No отсчета 1 2 3 4 5 6 7
Сигнал Sвх1(i)
Прямоугольный импульс 2 2 2 2 2 2 2
Сигнал Sвх2(i)
Приподнятый косинус 0,147*А 0,5*А 0,854*А 1*А 0,854*А 0,5*А 0,147*А
0,294 1 1,708 2 1,708 1 0,294
А = (1+No варианта) = 1 + 1 = 2
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением. Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Задача 2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Таблица 3 - Исходные данные для расчета
Параметр Значение
Вариант N 1
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний p_ош 0,001
Величина относительного доверительного интервала 〖ε_p〗^* = 0,1+0,1*N 0,2
Величина доверительной вероятности P 0,9
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Вопрос 3
Вариант 1. Математические методы эффективного (безызбыточного) кодирования источников дискретных сообщений
=============================================
Дополнительная информация
Проверил(а): Лебедянцев Валерий Васильевич
Оценка: Отлично
Дата оценки: 03.10.2023г.
Могу помочь с решением контрольной работы, пишите, а также:
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 03.10.2023г.
Могу помочь с решением контрольной работы, пишите, а также:
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. ВАРИАНТ № 01
f-akho
: 14 октября 2023
Задача 1
Вариант 1, значит A=1, величины отсчетов прямоугольного импульса вычисляются так
S(i)=1+A= 2
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача 2
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0.2.
Величина доверительной вероятности pp = 0,9.
Теоретическая часть
Математические методы эффективног
500 руб.
Математическое моделирование телекоммуникационных устройств и систем
Dirol340
: 25 января 2021
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация дл
330 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант 05
xtrail
: 15 августа 2024
Вариант: 05
ЗАДАЧА 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 - Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет
800 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №26
IT-STUDHELP
: 12 декабря 2023
Вариант №26
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отсчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он буде
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №2
IT-STUDHELP
: 12 декабря 2023
Вариант №2
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №18
IT-STUDHELP
: 3 октября 2023
Вариант No18
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который б
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №4
IT-STUDHELP
: 3 октября 2023
Вариант No4
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который бу
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №9
IT-STUDHELP
: 20 мая 2023
Вариант No9
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он буде
700 руб.
Другие работы
Численные методы. Вариант № 9
2245546
: 2 апреля 2013
1. Введение…………………………………………….………………………….3
2. Теоретическая часть………………………………….………………………..4
2.1. Интерполяция…...……..…………...………..…………………..4
2.2. Аппроксимация функции………………..……………………...5
2.3. Решение нелинейных уравнений методом касательных……...8
2.4. Поиск точек экстремума функции. Метод Фибоначчи…....….9
2.5. Численное интегрирование………..…………………………..11
3. Практическая часть……………………………………….………………….15
3.1. Интерполяция………………………………………………….15
3.2. Аппроксимация………………………………………………..16
3.3.
Управление качеством. Контрольная работа. Вариант № 8
татьяна89
: 9 декабря 2012
Задание 1.
Задача №8.
По представленным исходным данным:
1) построить контрольную карту;
2) обосновать выбор типа контрольной карты;
3) проанализировать построенную контрольную карту (все расчеты и выводы обосновать).
Задание 2.
Сформулируйте условие задачи по проблемам качества и решите ее с использованием исходных данных организации, в которой работаете, и методов менеджмента качества из следующего списка:
- диаграмма Парето;
- контрольные карты;
- схема Исикава.
50 руб.
Лабораторная №2 (вариант 4) "Теория сложностей вычислительных процессов и структур"
Greenberg
: 31 июля 2011
Графы. Поиск остова минимального веса.
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 7 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля....
49 руб.
Экономико-математические методы. Вариант №6
hawk
: 25 мая 2014
1. На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций (Q) составляют на станции А -500 , Б -1100, В - 900 номеров. Потребности новых районов застройки города в телефонах(q) составляют: 1 - 400, 2 - 500, 3 - 900, 4 - 700 номеров Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой зас
200 руб.