Построить классификатор на основе метода ближайших k соседей - ИНТЕЛЛЕКТУАЛЬНЫЕ ТЕХНОЛОГИИ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Аннотация на работу
Контрольная работа состоит из нескольких заданий. От варианта студента (2 последние цифры пароля) зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий.
Предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (методические указания и пример приведены ниже); От варианта зависят весовая функция и значение k.
2) Построить классификатор на основе алгоритма CART построения дерева принятия решений (методические указания и пример приведены ниже). От варианта зависит выбор обучающей выборки.
Как определить свой вариант? У каждого студента есть некоторый номер N, который его уникально идентифицирует, этот номер – последние 2 цифры пароля.
Вариант выборки для метода ближайших соседей определяется по формуле:
Nв=((N+13) mod 11)+1
Вариант весовой функции определяется по формуле:
Nвф=((N+7) mod 4)+1
Вариант выборки для метода построения решающего дерева определяется по формуле:
Nвд=((N∗N+2) mod 11)+1
В отчёте по контрольной работе необходимо указать свой номер и результаты расчётов по указанным выше формулам. После чего уже описывать подробный ход решения. Для метода построения решающих деревьев необходимо изобразить графически получившееся в итоге дерево (можно как в примере).
Варианты для контрольной работы
Для всех вариантов в методе ближайших соседей значение k (количество соседей) необходимо брать на 1 больше, чем количество классов в обучающей последовательности.
Варианты обучающих последовательностей и тестового объекта:
Исходные данные
Таблица 1 – Исходные данные
Показатель Значение
Вариант 03
обучающих последовательностей и тестового объекта (X,Y)={ (7,8,1), (6,7,1), (2,1,1), (2,4,1), (9,9,1), (8,4,1), (4,7,1), (11,13,2), (6,11,2), (14,8,2), (11,7,2)}: тестовый объект x’=(6,1)
Варианты весовых функций:
метод парзеновского окна фиксированной ширины ; h=0.1
Здесь — заданная неотрицательная монотонно невозрастающая функция на , K(r)=e^(-r)
k 3
Задание
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений.
Контрольная работа состоит из нескольких заданий. От варианта студента (2 последние цифры пароля) зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий.
Предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (методические указания и пример приведены ниже); От варианта зависят весовая функция и значение k.
2) Построить классификатор на основе алгоритма CART построения дерева принятия решений (методические указания и пример приведены ниже). От варианта зависит выбор обучающей выборки.
Как определить свой вариант? У каждого студента есть некоторый номер N, который его уникально идентифицирует, этот номер – последние 2 цифры пароля.
Вариант выборки для метода ближайших соседей определяется по формуле:
Nв=((N+13) mod 11)+1
Вариант весовой функции определяется по формуле:
Nвф=((N+7) mod 4)+1
Вариант выборки для метода построения решающего дерева определяется по формуле:
Nвд=((N∗N+2) mod 11)+1
В отчёте по контрольной работе необходимо указать свой номер и результаты расчётов по указанным выше формулам. После чего уже описывать подробный ход решения. Для метода построения решающих деревьев необходимо изобразить графически получившееся в итоге дерево (можно как в примере).
Варианты для контрольной работы
Для всех вариантов в методе ближайших соседей значение k (количество соседей) необходимо брать на 1 больше, чем количество классов в обучающей последовательности.
Варианты обучающих последовательностей и тестового объекта:
Исходные данные
Таблица 1 – Исходные данные
Показатель Значение
Вариант 03
обучающих последовательностей и тестового объекта (X,Y)={ (7,8,1), (6,7,1), (2,1,1), (2,4,1), (9,9,1), (8,4,1), (4,7,1), (11,13,2), (6,11,2), (14,8,2), (11,7,2)}: тестовый объект x’=(6,1)
Варианты весовых функций:
метод парзеновского окна фиксированной ширины ; h=0.1
Здесь — заданная неотрицательная монотонно невозрастающая функция на , K(r)=e^(-r)
k 3
Задание
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений.
Дополнительная информация
СибГУТИ, 2023 год, Зачет,Ракитский А.А
Похожие материалы
Онлайн Тест по дисциплине: Интеллектуальные технологии информационной безопасности.
IT-STUDHELP
: 29 сентября 2023
Вопрос No1
К основным задачам машинного обучения относятся:
Поиск скрытых закономерностей, генерация новых знаний
Классификация, кластеризация, регрессия, уменьшение размерности и прогнозирование
Обработка специализированных наборов данных, генерация новых наборов данных, сжатие данных
Повышение точности прогноза по сравнению с некоторой существующей прогнозирующей или решающей моделью, виртуализация данных, оптимизация
Вопрос No2
MSE это
Measure Square Evaluating, оценка квадратичной
700 руб.
Интеллектуальные технологии информационной безопасности. Контрольная работа. Вариант 22
banderas0876
: 14 ноября 2023
Контрольная работа по методам классификации
Выбор варианта: N = 22
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=3
Классификатор на основе метода ближайших k соседей и определение класса тестового значения
Решение:
(X,Y)={ (1,7,1), (3,2,1), (6,8,1), (4,7,1), (9,8,1), (4,5,1), (1,2,1), (14,10,2),
(8,12,2), (14,12,2), (11,10,2), (13,8,2), (13,6,2)}: тестовый объект x’=(6,7)
1 Построить классификатор на основе алгоритма CART построения дерева прин
250 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05
SibGUTI2
: 25 июля 2024
Контрольная работа по методам классификации
Контрольная работа состоит из нескольких заданий. От варианта студента (2 последние цифры пароля) зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий.
Предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (методические указания и пример приведены ниже); От вариант
400 руб.
Интеллектуальные технологии информационной безопасности. Лабораторные работы 1,2,3. Вариант 22
banderas0876
: 14 ноября 2023
Лабораторная работа 1. «Метод k ближайших соседей»
450 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
IT-STUDHELP
: 7 октября 2023
Вариант №10
Выбор варианта:
N = 10
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=2
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=4
Обучающая последовательность и тестовый объект для метода ближайших соседей:
2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3), (1,10,3), (9,7,3),
600 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
IT-STUDHELP
: 7 октября 2023
Вариант №19
Контрольная работа по методам классификации
Выбор варианта: N = 19
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=11.
Обучающая последовательность и тестовый объект:
11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновск
600 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
IT-STUDHELP
: 19 июня 2023
Контрольная работа
Вариант No5
Выбор варианта:
N = 5
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=8
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=6
Обучающая последовательность и тестовый объект для метода ближайших соседей:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
700 руб.
Лабораторная работа №1,2,3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант 05
SibGUTI2
: 25 июля 2024
Лабораторная работа No1
«Метод k ближайших соседей»
Вариант: 05
Задание на лабораторную работу 1:
Суть лабораторной работы заключается в написании классификатора на основе метода k ближайших соседей. Данные из файла необходимо разбить на две выборки, обучающую и тестовую, согласно общепринятым правилам разбиения. На основе этих данных необходимо обучить разработанный классификатор. На обучающей выборке следует подобрать необходимые параметры метода для лучшей точности, а на тестовой выборке од
700 руб.
Другие работы
Валютное регулирование в РФ. Цели. Направление. Эффективность
Elfa254
: 20 ноября 2013
Государственное валютное регулирование в РФ заключается в установлении порядка расчетов в валюте РФ, приобретения иностранной валюты, ведения счетов резидентов и нерезидентов в банках РФ, порядка расчетов в иностранной валюте между резидентами и нерезидентами, права собственности на валютные ценности, права перевода, вывоза и пересылки валютных ценностей, а также права резидентов на открытие счетов в иностранной валюте на территории РФ и за ее пределами и права нерезидентов на открытие счетов в
15 руб.
Проект генетического алгоритма для задачи максимизации заданной целочисленной функции (C#)
Aronitue9
: 31 мая 2012
Содержание
Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Глава 1
Генетические алгоритмы. История развития, основные понятия. Простой генетический алгоритм . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 История эволюционных вычислений . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Символьная модель простого ГА . . . . . . . . . . . . . . . . . . . . . . . . .
20 руб.
Статистика. 6-й вариант СибГУТИ
joda66
: 11 февраля 2016
Динамический ряд состоит из уровней ряда:
Используя абсолютный прирост выполнить прогноз на следующий год:
1. 420; 3. 440;
2. 450; 4. 410.
1. средней геометрический
2. индекс постоянного состава
3. среднегармонический
4. индекс переменного состава
3. Чтобы уменьшить ошибку выборки надо:
1. заново провести наблюдение
2. сделать совокупность однородной
3. увеличить объем выборки
4. провести серийный отбор
4. Коэффициент кор
150 руб.
Вал сечения. Вариант №10. В компасе и автокаде
Laguz
: 16 февраля 2021
Вал сделан в 3 форматах: в 3д-компас, в компасе и автокаде.
Чертежи в автокаде полноценные, сделанные именно в автокаде,
а не просто из компаса сохранные в автокад.
50 руб.