Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 2 7 2 2)
(6 0 0 1 2 5)
(2 0 0 4 0 7)
(7 1 4 0 1 7)
(2 2 0 1 0 0)
(2 5 7 7 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 23
2 3 8
3 8 18 52
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 2 7 2 2)
(6 0 0 1 2 5)
(2 0 0 4 0 7)
(7 1 4 0 1 7)
(2 2 0 1 0 0)
(2 5 7 7 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 23
2 3 8
3 8 18 52
Дополнительная информация
Оценка - отлично!
Год сдачи: 2020 г.
Преподаватель: Галкина М.Ю.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Год сдачи: 2020 г.
Преподаватель: Галкина М.Ю.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Похожие материалы
Теория сложностей вычислительных процессов и структур. Билет №6
IT-STUDHELP
: 19 ноября 2021
Билет No6
По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&6&2&7&2&2@6&0&0&1&2&5@2&0&0&4&0&7@7&1&4&0&1&7@2&2&0&1&0&0@2&5&7&7&0&0))
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор
380 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Lele911
: 22 мая 2022
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6.
LowCost
: 1 февраля 2022
Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превыша
249 руб.
Экзаменационный билет № 6 Теория сложности вычислительных процессов и структур
AlexBrookman
: 29 января 2019
Билет №6
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 3 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сфор
330 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Учеба "Под ключ"
: 25 января 2026
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0
500 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №4
Учеба "Под ключ"
: 16 июля 2025
Билет №5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 4 0 7 6 4)
(4 0 1 3 2 7)
(0 1 0 5 4 1)
(7 3 5 0 3 7)
(6 2 4 3 0 2)
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Roma967
: 21 мая 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
400 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Roma967
: 11 января 2025
Билет №8
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 7 7 7 1 4)
(7 0 1 7 0 5)
(7 1 0 5 6 4)
(7 7 5 0 7 4)
(1 0 6 7 0 4)
(4 5 4 4 4 0)
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
350 руб.
Другие работы
Перечертить два вида модели. Построить третий вид. Контрольная работа 1А - Вариант 13
.Инженер.
: 22 декабря 2025
Б.Г. Миронов, Р.С. Миронова, Д.А. Пяткина, А.А. Пузиков. Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере. Контрольная работа 1А. Вариант 13
Перечертить два вида модели. Построить третий вид. Выполнить необходимые разрезы. Наклонное сечение задается преподавателем.
В состав работы входит:
Чертеж;
3D модель.
Выполнено в программе Компас + чертеж в PDF.
100 руб.
Вопросы и ответы по менеджменту (в помощь для студентов экономических специальностей)
evelin
: 29 июля 2015
Определение и сущность понятия "Менеджмент" - как теории и практики управления.
Ключевые составляющие менеджмента организации.
Теоретические школы менеджмента их сущность и эволюция.
Основные принципы классической школы научного управления Ф. Тейлора.
Поведенческая теоретическая школа менеджмента, сущность и основные
особенности.
Административная школа управления, сущность и основные особенности.
Основные цели и задачи менеджмента в структуре управления фирмой.
Суть и содержание понятий "предпр
30 руб.
Водоснабжение и водоотведение жилых зданий
Куница
: 17 сентября 2010
Состав работы:
2.1. Решение схемы водоснабжения объекта
2.2. Гидравлический расчет внутреннего водопровода
2.2.1. Нормативные данные
2.2.2. Определение вероятности действия приборов
2.2.3. Определение расчетных расходов
2.2.4. Определение требуемого напора в системе
2.2.5. Подбор водомера.
2.2.6. Подбор насоса для системы водоснабжения
Таблица «Гидравлический расчет системы водоснабжения»
1. Проектирование внутренней и дворовой систем водоотведения
3.1. Решение схемы водоотведения объекта
3.2.
150 руб.
Экзаменационная работа. Теория вероятности и математическая статистика. 3-й семестр. Билет №11
58197
: 27 марта 2013
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
Направление «Телекоммуникации». Ускоренная подготовка
Дисциплина «Теория вероятностей»
Экзамен.
Билет № 11
1. Биномиальное распределение и его характеристики.
2. На единичный круг бросается случайная точка. Какова вероятность, что её расстояние от края будет меньше, чем 0,1?
3. Три самолета одновременно сбрасывают по одной бомбе на цель. Вероятности попадания для них – 0,3, 0,4, 0,6 соответственно. Це
20 руб.