СИНЕРГИЯ Основы искусственного интеллекта Тест 100 баллов 2024 год
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Adobe Acrobat Reader
Описание
СИНЕРГИЯ Основы искусственного интеллекта (Темы 1-5 Итоговый тест)
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО
2024 год
Ответы на 33 вопроса
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
УЧЕБНЫЕ МАТЕРИАЛЫ
1 Введение в ML
2 Практические задания для самостоятельного выполнения 1
3 Постановка задачи ML
4 Практические задания для самостоятельного выполнения 2
5 Классические алгоритмы ML. 1 часть
6 Практические задания для самостоятельного выполнения 3
7 Классические алгоритмы ML. 2 часть
8 Практические задания для самостоятельного выполнения 4
9 Метрика качества и работа с признаками
10 Практические задания для самостоятельного выполнения 5
11 Основы NLP
12 Практические задания для самостоятельного выполнения 6
13 Векторные представления слов
14 Практические задания для самостоятельного выполнения 7
15 Рекомендательные системы. Часть 1
16 Практические задания для самостоятельного выполнения 8
17 Рекомендательные системы. Часть 2
18 Практические задания для самостоятельного выполнения 9
19 Нейронные сети
20 Практические задания для самостоятельного выполнения 10
21 Компьютерное зрение
22 Практические задания для самостоятельного выполнения 11
23 Заключение
1. Алгоритм Backpropagation:
2. Архитектура полносвязной нейронные сети основана на идее
3. В каком случае метрика accuracy будет репрезентативной
4. Все описанные в лекции алгоритмы обладают общим свойством. Каким?
5. Выберете верное утверждение:
6. Выберете верное утверждение:
7. Градиентный бустинг - это:
8. Если мы предсказываем средние затраты на обслуживание машины, то максимальная скорость разгона машины – это
9. Если мы предсказываем среднюю стоимость машины в зависимости от ее класса, то класс представляет собой
10. Задача автоматического выделения похожих новостных статей без размеченной выборки – это задача
11. Задача автоматической идентификации марки машины по ее изображению – это задача
12. Задача классификации – это задача
13. Задача понижения размерности признакового пространства – это задача
14. Задачу машинного обучения можно представить в виде последовательности выполнения действий по выбору оптимальной решающей функции f из многопараметрического семейства F. Выбор модели машинного обучения происходит на этапе:
15. Задачу машинного обучения можно представить в виде последовательности выполнения действий по выбору оптимальной решающей функции f из многопараметрического семейства F. Задача обучения сводится к задаче оптимизации на этапе:
16. Идея Momentum состоит в:
17. Лучший способ борьбы с переобучением:
18. Метод K-Means - Это:
19. Метод опорных векторов (Support Vectors Machine, SVM):
20. Метод подбора адаптированного learning rate на основе оценки исторических градиентов:
21. Наиболее популярный на текущий момент метод оптимизации, основанный на идее использования двух моментных членов, предложенный в 2015 году:
22. Недостатки k-means:
23. Обучение с учителем характеризуется
24. Отметьте верные высказывания о функциях активации:
25. Переобучение – это эффект, возникающий при
26. При прямом проходе через Feed Forward Neural Network:
27. Процедура LearnID3 состоит в:
28. Решающие деревья обладают следующими свойствами:
29. Случайный лес – это:
30. Условия Каруша-Куна-Таккера применимы для решения:
31. Функции активации в нейронных сетях:
32. Что такое машинный перевод?
33. Эмпирический риск вводится исходя из предположения, что
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО
2024 год
Ответы на 33 вопроса
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
УЧЕБНЫЕ МАТЕРИАЛЫ
1 Введение в ML
2 Практические задания для самостоятельного выполнения 1
3 Постановка задачи ML
4 Практические задания для самостоятельного выполнения 2
5 Классические алгоритмы ML. 1 часть
6 Практические задания для самостоятельного выполнения 3
7 Классические алгоритмы ML. 2 часть
8 Практические задания для самостоятельного выполнения 4
9 Метрика качества и работа с признаками
10 Практические задания для самостоятельного выполнения 5
11 Основы NLP
12 Практические задания для самостоятельного выполнения 6
13 Векторные представления слов
14 Практические задания для самостоятельного выполнения 7
15 Рекомендательные системы. Часть 1
16 Практические задания для самостоятельного выполнения 8
17 Рекомендательные системы. Часть 2
18 Практические задания для самостоятельного выполнения 9
19 Нейронные сети
20 Практические задания для самостоятельного выполнения 10
21 Компьютерное зрение
22 Практические задания для самостоятельного выполнения 11
23 Заключение
1. Алгоритм Backpropagation:
2. Архитектура полносвязной нейронные сети основана на идее
3. В каком случае метрика accuracy будет репрезентативной
4. Все описанные в лекции алгоритмы обладают общим свойством. Каким?
5. Выберете верное утверждение:
6. Выберете верное утверждение:
7. Градиентный бустинг - это:
8. Если мы предсказываем средние затраты на обслуживание машины, то максимальная скорость разгона машины – это
9. Если мы предсказываем среднюю стоимость машины в зависимости от ее класса, то класс представляет собой
10. Задача автоматического выделения похожих новостных статей без размеченной выборки – это задача
11. Задача автоматической идентификации марки машины по ее изображению – это задача
12. Задача классификации – это задача
13. Задача понижения размерности признакового пространства – это задача
14. Задачу машинного обучения можно представить в виде последовательности выполнения действий по выбору оптимальной решающей функции f из многопараметрического семейства F. Выбор модели машинного обучения происходит на этапе:
15. Задачу машинного обучения можно представить в виде последовательности выполнения действий по выбору оптимальной решающей функции f из многопараметрического семейства F. Задача обучения сводится к задаче оптимизации на этапе:
16. Идея Momentum состоит в:
17. Лучший способ борьбы с переобучением:
18. Метод K-Means - Это:
19. Метод опорных векторов (Support Vectors Machine, SVM):
20. Метод подбора адаптированного learning rate на основе оценки исторических градиентов:
21. Наиболее популярный на текущий момент метод оптимизации, основанный на идее использования двух моментных членов, предложенный в 2015 году:
22. Недостатки k-means:
23. Обучение с учителем характеризуется
24. Отметьте верные высказывания о функциях активации:
25. Переобучение – это эффект, возникающий при
26. При прямом проходе через Feed Forward Neural Network:
27. Процедура LearnID3 состоит в:
28. Решающие деревья обладают следующими свойствами:
29. Случайный лес – это:
30. Условия Каруша-Куна-Таккера применимы для решения:
31. Функции активации в нейронных сетях:
32. Что такое машинный перевод?
33. Эмпирический риск вводится исходя из предположения, что
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.