Лабораторные работы №№1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №1
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
0 10 13 17 18 14 6 23 7 9
10 0 13 6 13 3 2 19 13 4
13 13 0 17 12 15 19 19 9 0
17 6 17 0 2 10 0 13 16 14
18 13 12 2 0 15 18 17 9 14
14 3 15 10 15 0 15 3 6 8
6 2 19 0 18 15 0 2 0 0
23 19 19 13 17 3 2 0 0 4
7 13 9 16 9 6 0 0 0 21
9 4 0 14 14 8 0 4 21 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
по алгоритму Форда-Беллмана
Вариант 1
0 1 11 2 9 3 0 8 3 6
1 0 4 5 6 0 11 10 10 10
11 4 0 6 11 11 0 7 3 1
2 5 6 0 0 2 4 10 0 1
9 6 11 0 0 0 10 2 8 11
3 0 11 2 0 0 5 8 3 6
0 11 0 4 10 5 0 8 4 7
8 10 7 10 2 8 8 0 10 5
3 10 3 0 8 3 4 10 0 7
6 10 1 1 11 6 7 5 7 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля
Вариант 1
Номер товара, i mi сi M
1 7 28 43
2 9 43
3 12 51 52
4 8 34
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
0 10 13 17 18 14 6 23 7 9
10 0 13 6 13 3 2 19 13 4
13 13 0 17 12 15 19 19 9 0
17 6 17 0 2 10 0 13 16 14
18 13 12 2 0 15 18 17 9 14
14 3 15 10 15 0 15 3 6 8
6 2 19 0 18 15 0 2 0 0
23 19 19 13 17 3 2 0 0 4
7 13 9 16 9 6 0 0 0 21
9 4 0 14 14 8 0 4 21 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
по алгоритму Форда-Беллмана
Вариант 1
0 1 11 2 9 3 0 8 3 6
1 0 4 5 6 0 11 10 10 10
11 4 0 6 11 11 0 7 3 1
2 5 6 0 0 2 4 10 0 1
9 6 11 0 0 0 10 2 8 11
3 0 11 2 0 0 5 8 3 6
0 11 0 4 10 5 0 8 4 7
8 10 7 10 2 8 8 0 10 5
3 10 3 0 8 3 4 10 0 7
6 10 1 1 11 6 7 5 7 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля
Вариант 1
Номер товара, i mi сi M
1 7 28 43
2 9 43
3 12 51 52
4 8 34
Дополнительная информация
Комментарии: Оценка: Зачет
Дата оценки: 19.11.2024
Дата оценки: 19.11.2024
Похожие материалы
Лабораторные работы №№1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №1
IT-STUDHELP
: 19 ноября 2021
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
0
600 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 1. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Номер варианта выбирается по последней цифре зачетной книжки
Вариант 1
Метод “пузырьковой” сортировки.
Массив для сортировки:
456, 827, 165, 117, 691, 476, 311, 25, 495, 571, 17, 30, 441, 696, 574, 162, 358, 119, 655, 241, 333, 978, 199, 959, 577,
24 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №1. Вариант №1
zhekaersh
: 1 марта 2015
Сортировка массивов
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Номер варианта выбирается по последней цифре зачетной книжки
Вариант 1
Метод “пузырьковой” сортировки.
Массив для сортировки:
456, 827, 165, 117, 691, 476, 311, 25, 495, 571, 17, 30, 441, 696, 574, 162, 358, 119, 655, 241, 333, 978, 1
40 руб.
Лабораторная работа № 1. Теория сложностей вычислительных процессов и структур
jashma28
: 20 мая 2012
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Номер варианта выбирается по последней цифре зачетной книжки
Вариант 1
Метод “пузырьковой” сортировки.
Массив для сортировки:
456, 827, 165, 117, 691, 476, 311, 25, 495, 571, 17, 30, 441, 696, 574, 162, 358, 119, 655, 241, 333, 978, 199, 959, 577, 790, 896,
800 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант 8
Учеба "Под ключ"
: 16 июля 2025
Лабораторная работа №1
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 14 9 3 22 17 16 0 14 18
14 0 19 0 2 0 11 14 21 20
9 19 0 17 20 22 4
1200 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант 01
SibGOODy
: 21 августа 2024
Лабораторная работа №1
1. Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1:
0 10 13 17 18 14 6 23 7 9
10 0 13 6 13 3 2 19 13 4
13 13 0 17 12 1
900 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №5
uliya5
: 14 апреля 2024
Лабораторная работа №1
Написать программу, которая по алгоритму Краскала находит остов
минимального веса для связного взвешенного неориентированного графа,
имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что
соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес
остова.
Номер варианта выбирается по последней цифре пароля.
Лабораторная работа №2
Написать программу, которая по алгоритму Дейкстры (если Ваша фамил
500 руб.
Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
IT-STUDHELP
: 5 декабря 2022
Лабораторная работа №1
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
600 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.