Лабораторные работы №№1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №1
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
0 10 13 17 18 14 6 23 7 9
10 0 13 6 13 3 2 19 13 4
13 13 0 17 12 15 19 19 9 0
17 6 17 0 2 10 0 13 16 14
18 13 12 2 0 15 18 17 9 14
14 3 15 10 15 0 15 3 6 8
6 2 19 0 18 15 0 2 0 0
23 19 19 13 17 3 2 0 0 4
7 13 9 16 9 6 0 0 0 21
9 4 0 14 14 8 0 4 21 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
по алгоритму Форда-Беллмана
Вариант 1
0 1 11 2 9 3 0 8 3 6
1 0 4 5 6 0 11 10 10 10
11 4 0 6 11 11 0 7 3 1
2 5 6 0 0 2 4 10 0 1
9 6 11 0 0 0 10 2 8 11
3 0 11 2 0 0 5 8 3 6
0 11 0 4 10 5 0 8 4 7
8 10 7 10 2 8 8 0 10 5
3 10 3 0 8 3 4 10 0 7
6 10 1 1 11 6 7 5 7 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля
Вариант 1
Номер товара, i mi сi M
1 7 28 43
2 9 43
3 12 51 52
4 8 34
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
0 10 13 17 18 14 6 23 7 9
10 0 13 6 13 3 2 19 13 4
13 13 0 17 12 15 19 19 9 0
17 6 17 0 2 10 0 13 16 14
18 13 12 2 0 15 18 17 9 14
14 3 15 10 15 0 15 3 6 8
6 2 19 0 18 15 0 2 0 0
23 19 19 13 17 3 2 0 0 4
7 13 9 16 9 6 0 0 0 21
9 4 0 14 14 8 0 4 21 0
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
по алгоритму Форда-Беллмана
Вариант 1
0 1 11 2 9 3 0 8 3 6
1 0 4 5 6 0 11 10 10 10
11 4 0 6 11 11 0 7 3 1
2 5 6 0 0 2 4 10 0 1
9 6 11 0 0 0 10 2 8 11
3 0 11 2 0 0 5 8 3 6
0 11 0 4 10 5 0 8 4 7
8 10 7 10 2 8 8 0 10 5
3 10 3 0 8 3 4 10 0 7
6 10 1 1 11 6 7 5 7 0
ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля
Вариант 1
Номер товара, i mi сi M
1 7 28 43
2 9 43
3 12 51 52
4 8 34
Дополнительная информация
Комментарии: Оценка: Зачет
Дата оценки: 19.11.2024
Дата оценки: 19.11.2024
Похожие материалы
Лабораторные работы №№1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №1
IT-STUDHELP
: 19 ноября 2021
ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
0
600 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 1. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Номер варианта выбирается по последней цифре зачетной книжки
Вариант 1
Метод “пузырьковой” сортировки.
Массив для сортировки:
456, 827, 165, 117, 691, 476, 311, 25, 495, 571, 17, 30, 441, 696, 574, 162, 358, 119, 655, 241, 333, 978, 199, 959, 577,
24 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №1. Вариант №1
zhekaersh
: 1 марта 2015
Сортировка массивов
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Номер варианта выбирается по последней цифре зачетной книжки
Вариант 1
Метод “пузырьковой” сортировки.
Массив для сортировки:
456, 827, 165, 117, 691, 476, 311, 25, 495, 571, 17, 30, 441, 696, 574, 162, 358, 119, 655, 241, 333, 978, 1
40 руб.
Лабораторная работа № 1. Теория сложностей вычислительных процессов и структур
jashma28
: 20 мая 2012
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Номер варианта выбирается по последней цифре зачетной книжки
Вариант 1
Метод “пузырьковой” сортировки.
Массив для сортировки:
456, 827, 165, 117, 691, 476, 311, 25, 495, 571, 17, 30, 441, 696, 574, 162, 358, 119, 655, 241, 333, 978, 199, 959, 577, 790, 896,
800 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант 8
Учеба "Под ключ"
: 16 июля 2025
Лабораторная работа №1
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 14 9 3 22 17 16 0 14 18
14 0 19 0 2 0 11 14 21 20
9 19 0 17 20 22 4
1200 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант 01
SibGOODy
: 21 августа 2024
Лабораторная работа №1
1. Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 1:
0 10 13 17 18 14 6 23 7 9
10 0 13 6 13 3 2 19 13 4
13 13 0 17 12 1
900 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №5
uliya5
: 14 апреля 2024
Лабораторная работа №1
Написать программу, которая по алгоритму Краскала находит остов
минимального веса для связного взвешенного неориентированного графа,
имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что
соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес
остова.
Номер варианта выбирается по последней цифре пароля.
Лабораторная работа №2
Написать программу, которая по алгоритму Дейкстры (если Ваша фамил
500 руб.
Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
IT-STUDHELP
: 5 декабря 2022
Лабораторная работа №1
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
600 руб.
Другие работы
Микроэкономика на тему: Спрос и предложение
СибирскийГУТИ
: 4 марта 2014
Содержание
1. Спрос
2. Предложение
3. Равновесие спроса и предложения
4. Ценовая эластичность
4.1. Понятие ценовой эластичности
4.2. Факторы ценовой эластичности спроса
5. Ответ на вопрос к заданию
Выбрать и охарактеризовать две позиции, противоположные по эластичности.
Эластичность на:
1. авиабилеты
2. дорогие украшения
3. соль
4. продукты питания
5. хлеб
6. дорогая мебель
7. дешевая мебель
8. дорогие вина
9. телевизоры
10. мобильные телефоны
Список литературы
70 руб.
СТБ 1959-2009. Строительство. Монтаж сборных бетонных и железобетонных конструкций. Контроль качества работ
evelin
: 28 июня 2013
Разработан научно-проектно-производственным республиканским унитарным предприятием «Стройтехнорм» (РУП «Стройтехнорм»), техническим комитетом по стандартизации в области архитектуры и строительства «Производство работ» (ТКС 11)
Внесен министерством архитектуры и строительства Республики Беларусь
Утвержден и введен в действие постановлением Госстандарта Республики Беларусь
от 24 апреля 2009 г. № 19
В национальном комплексе технических нормативных правовых актов в области архитектуры
и строител
5 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 20 Вариант 9
Z24
: 10 ноября 2025
Перегретый пар при начальном абсолютном давлении р1 и температуре t1 вытекает в среду с давлением р = 1 бар. Секундный расход пара G = 3 кг/c. Требуется выбрать тип сопла, определить теоретическую скорость истечения пара, а также площади выходного и минимального сечений сопла.
180 руб.
Теплотехника РГАУ-МСХА 2018 Задача 8 Вариант 09
Z24
: 27 января 2026
Определить поверхность нагрева стального рекуперативного газовоздушного теплообменника (толщина стенок δс=3 мм) при прямоточной и противоточной схемах движения теплоносителей (рис. 6.2 и 6.3), если объемный расход воздуха при нормальных условиях Vн, средний коэффициент теплоотдачи от воздуха к поверхности нагрева α1, от поверхности нагрева к воде α2=500 Вт/(м²·К), коэффициент теплопроводности материала стенки трубы (стали) λ=50 Вт/(м·К), теплоемкость топочных газов сг=1,15 кДж/(кг·К), плотность
300 руб.