Лабораторные работы 1, 2, 3 "Теория Информации"
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Все работы успешно зачтены, вам необходимо лишь подписать
Дополнительная информация
Лабораторная работа №1 "Вычисление энтропии Шеннона"
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е. символы в файле встречаются равновероятно и независимо.
Второй файл должен содержать независимую последовательность символов (количество различных символов больше 3) с неравновероятным распределением. Вероятности символов должны быть заданы заранее, до создания файла.
Эти два файла необходимо сгенерировать программно, используя генератор псевдослучайных чисел.
В третьем файле содержится фрагмент художественного текста на русском или английском языке. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. Составить программу, определяющую оценки энтропии имеющихся текстовых файлов.
Для вычисления оценки энтропии необходимо программно вычислить частоты символов (пар символов) в файле, которые будут оценками реальных вероятностей символов, а затем, используя формулу Шеннона, вычислить оценки энтропии файла.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравните полученные оценки между собой. Объясните полученные результаты
Оценка энтропии
(частоты отдельных символов) Оценка энтропии
(частоты пар символов) Теоретическое значение энтропии
Файл 1
Файл 2
фрагмент художественного произведения
Лабораторная работа №2
Оптимальное побуквенное кодирование
Цель работы: Изучение метода оптимального кодирования Хаффмана.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в практической работе №1. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Файл 1
Файл 2
фрагмент художественного произведения
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Лабораторная работа №3
Методы почти оптимального кодирования
Цель работы: Изучение метода почти оптимального кодирования Фано. Изучение метода почти оптимального кодирования Шеннона
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано и процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в практической работе №1. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученные коды являются префиксными.
3. Для каждого метода кодирования после кодирования вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Файлы Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Файл 1
Файл 2
фрагмент художественного произведения
Метод Фано Файл 1
Файл 2
фрагмент художественного произведения
Метод Шеннона Файл 1
Файл 2
фрагмент художественного произведения
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е. символы в файле встречаются равновероятно и независимо.
Второй файл должен содержать независимую последовательность символов (количество различных символов больше 3) с неравновероятным распределением. Вероятности символов должны быть заданы заранее, до создания файла.
Эти два файла необходимо сгенерировать программно, используя генератор псевдослучайных чисел.
В третьем файле содержится фрагмент художественного текста на русском или английском языке. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. Составить программу, определяющую оценки энтропии имеющихся текстовых файлов.
Для вычисления оценки энтропии необходимо программно вычислить частоты символов (пар символов) в файле, которые будут оценками реальных вероятностей символов, а затем, используя формулу Шеннона, вычислить оценки энтропии файла.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравните полученные оценки между собой. Объясните полученные результаты
Оценка энтропии
(частоты отдельных символов) Оценка энтропии
(частоты пар символов) Теоретическое значение энтропии
Файл 1
Файл 2
фрагмент художественного произведения
Лабораторная работа №2
Оптимальное побуквенное кодирование
Цель работы: Изучение метода оптимального кодирования Хаффмана.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в практической работе №1. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Название текста Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Файл 1
Файл 2
фрагмент художественного произведения
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Лабораторная работа №3
Методы почти оптимального кодирования
Цель работы: Изучение метода почти оптимального кодирования Фано. Изучение метода почти оптимального кодирования Шеннона
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано и процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в практической работе №1. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученные коды являются префиксными.
3. Для каждого метода кодирования после кодирования вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Метод
кодирования Файлы Оценка
избыточности кодирования Оценка энтропии выходной посл-ти (частоты символов) Оценка энтропии выходной посл-ти (частоты пар символов) Оценка энтропии выходной посл-ти (частоты троек символов)
Метод Хаффмана Файл 1
Файл 2
фрагмент художественного произведения
Метод Фано Файл 1
Файл 2
фрагмент художественного произведения
Метод Шеннона Файл 1
Файл 2
фрагмент художественного произведения
Избыточность кодирования определяется как , где H – энтропия текста, Lcp – средняя длина кодового слова.
Похожие материалы
Лабораторные работы №1-3. Теория информации
Petr1
: 7 мая 2020
Лабораторная работа №1
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т
350 руб.
Лабораторная работа №3. Теория информации
mamontynok
: 31 января 2014
Реализовать процедуры построения кодов Шеннона и Фано.
Построить коды Шеннона и Фано для текста на английском языке (использовать файл не менее 1 Кб). Распечатать полученные кодовые таблицы в виде:
Символ Частота Кодовое слово Длина кодового слова
Сравнить средние длины кодового слова с энтропией исходного файла для всех построенных статических кодов. Полученные результаты оформить в виде таблицы:
Энтропия исходного текста Средняя длина кодового слова
Код Хаффмана Код Шеннона Код Фано
12 руб.
Лабораторная работа №3. Теория информации
Lampa
: 7 декабря 2013
Реализовать процедуры построения кодов Шеннона и Фано.
Построить коды Шеннона и Фано для текста на английском языке (использовать файл не менее 1 Кб). Распечатать полученные кодовые таблицы в виде:
Символ Частота Кодовое слово Длина кодового слова
Сравнить средние длины кодового слова с энтропией исходного файла для всех построенных статических кодов. Полученные результаты оформить в виде таблицы:
Энтропия исходного текста Средняя длина кодового слова
Код Хаффмана Код Шеннона Код Фано
П
13 руб.
Лабораторные работы №1-3 по дисциплине «Теория информации». Общий вариант.
holm4enko87
: 15 мая 2025
Лабораторная работа №1
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е. символы в файле встречаются равновероятно и независимо.
Второй файл должен содержать независимую последовательность символов (количество различных символов больше 3) с неравновероятным распределением. Вероятности символов
550 руб.
Лабораторные работы №1-3 по дисциплине: Теория информации. Вариант общий
Roma967
: 20 июля 2024
Лабораторная работа №1
«Вычисление энтропии Шеннона»
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание лабораторной работы
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномер
900 руб.
Лабораторная работа 1-3 по дисциплине «Теория информации» вариант 9
Владислав161
: 7 апреля 2024
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е. символы в файле встречаются равновероятно и независимо.
Второй файл должен содержать независимую последовательность символов (количество различных символов больше 3) с неравновероятным распределением. Вероятности символов должны быть заданы з
500 руб.
Лабораторные работы 1-3 по дисциплине: Теория информации. Вариант №4
IT-STUDHELP
: 20 декабря 2022
Лабораторная работа 1
Формулировка задания
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е. с
600 руб.
Лабораторная работа 1-3 по дисциплине: Теория информации. Вариант 11
IT-STUDHELP
: 7 апреля 2022
Лабораторная работа №1
Формулировка задания
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е.
600 руб.
Другие работы
Расчёт и исследование системы стабилизации скорости вращения электродвигателя постоянного тока
SRG88
: 8 июня 2010
Целью данной курсовой работы является приобретение и развитие у студентов навыков практического расчёта и теоретического исследования систем автоматического управления в области электропривода промышленных установок, углубление знаний по отдельным разделам курса "Теория автоматического управления", развитие самостоятельности в принятии наиболее целесообразных решений при анализе полученных результатов.
Теория автоматического управления и регулирования является теоретической основой автоматически
Електрообладнання автоматизованої насосної станції і електроосвітлення приміщення насосної станції
tnhpt34
: 1 мая 2013
ЗМІСТ
1. Електрообладнання
1.1 Втуп…………………………………………………….…………………..3
1.2 Характеристика насосної станції і вимоги, які пред'являються і електроприводу насосів……………………………………………….………….4
1.3 Вибір системи електропривода насосів………………………….………5
1.4 Розрахунок потужності привідних електродвигунів…………….….…..6
1.5 Вибір всіх двигунів за каталогом. Вибір способу пуску двигунів насосів……………………………………………………………………..……….7
1.6 Розробка електричної схеми управління насосної станції та опис її роботи…………………………………
25 руб.
ЛАБОРАТОРНАЯ РАБОТА №1 «ЭФФЕКТИВНОЕ КОДИРОВАНИЕ НА ПРИМЕРЕ КОДА ХАФФМЕНА» Дисциплина «Основы построения телекоммуникационных систем »
nataliykokoreva
: 2 апреля 2013
ЦЕЛЬ РАБОТЫ
Изучение принципа эффективного кодирования источника дискретных сообщений.
K = 7 (число сообщений)
Энтропия будет максимальной при условии, что все сообщения равновероятны.
150 руб.
Лабораторная работа № 3.6 по дисциплине: Метрология, стандартизация и сертификация Измерение частоты и периода электрических сигналов. Вариант 9.
ДО Сибгути
: 11 февраля 2016
1. ЦЕЛЬ РАБОТЫ
1.1. Освоить методы измерения частоты и периода электрических сигналов специализированными средствами измерений.
1.2. Приобрести практические навыки работы с цифровыми и резонансными частотомерами, измерительными генераторами.
1.3. Получить практические навыки обработки результатов измерения частоты и периода сигналов, оценки погрешности (неопределенности) результатов измерений и их оформление.
2. ПРОГРАММА ЛАБОРАТОРНОЙ РАБОТЫ
2.1. Измерение частоты и периода источника гармони
100 руб.