Курсовая по дисциплине: Вычислительная математика. Вариант 2
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание для курсовой работы
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10^(-4) на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты Q=интеграл(y^(2)dt), выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 2:
{y`=(cosy/(4+x)+y)
{y(0)=k
где k - наименьший положительный корень уравнения x^(4)+4x^(3)-8x^(2)-17=0.
Вопросы для защиты: 3, 8, 9, 13.
Фамилия начинается на СОГЛАСНУЮ букву - метод хорд;
Имя начинается на СОГЛАСНУЮ букву - метод трапеций.
Ответы на контрольные вопросы
3. Как определить, что следует прекратить итерационный процесс при приближенном решении нелинейного уравнения методом хорд с заданной точностью?
8. В чем заключается метод двойного пересчета?
9. В чем заключается смысл линейной интерполяции?
13. Приведите формулу оценки погрешности формулы Симпсона.
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10^(-4) на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты Q=интеграл(y^(2)dt), выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 2:
{y`=(cosy/(4+x)+y)
{y(0)=k
где k - наименьший положительный корень уравнения x^(4)+4x^(3)-8x^(2)-17=0.
Вопросы для защиты: 3, 8, 9, 13.
Фамилия начинается на СОГЛАСНУЮ букву - метод хорд;
Имя начинается на СОГЛАСНУЮ букву - метод трапеций.
Ответы на контрольные вопросы
3. Как определить, что следует прекратить итерационный процесс при приближенном решении нелинейного уравнения методом хорд с заданной точностью?
8. В чем заключается метод двойного пересчета?
9. В чем заключается смысл линейной интерполяции?
13. Приведите формулу оценки погрешности формулы Симпсона.
Дополнительная информация
Оценка - отлично!
Год сдачи: 2025 г.
Преподаватель: Галкина М.Ю.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Год сдачи: 2025 г.
Преподаватель: Галкина М.Ю.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Похожие материалы
Курсовая работа по дисциплине: Вычислительная математика. Вариант 2
SibGOODy
: 22 августа 2024
Задание для курсовой работы
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k - наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.
800 руб.
Курсовая работа по дисциплине "Вычислительная математика" (вариант №2)
Greenberg
: 28 августа 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
290 руб.
КУРСОВАЯ РАБОТА по дисциплине: Вычислительная математика. Вариант №2.
freelancer
: 7 августа 2016
Задание:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахожден
80 руб.
Курсовая работа по дисциплине «Вычислительная математика». Вариант №2
beklenev
: 15 декабря 2015
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значени
99 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №2
Roma967
: 31 мая 2015
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием (см. скрин).
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождени
400 руб.
Курсовая работа по дисциплине "Вычислительная математика". Вариант №2
selkup
: 28 декабря 2013
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений
150 руб.
Вычислительная математика. Вариант №2
IT-STUDHELP
: 6 февраля 2022
Курсовая работа
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.
500 руб.
Курсовая работа по дисциплине Вычислительная математика
aker
: 26 апреля 2021
Курсовая работа по дисциплине Вычислительная математика Вариант 1
400 руб.
Другие работы
Контрольная работа №2 по дисциплине: Физика Вариант 7
triton88
: 22 декабря 2023
Задача №1 От источника с напряжением U = 800 В необходимо передать потребителю мощность Р = 10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10% от передаваемой мощности?
Задача №2 За время t = 8c при равномерно возрастающей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, проходящий в проводнике, если сила тока в начальный момент времени равна нулю.
550 руб.
Влияние окружающей среды на экономический рост и промышленность
ostah
: 11 марта 2013
Одна из важнейших целей промышленной политики — это создать основу и условия для сильного, новаторского и конкурентоспособного индустриального сектора, таким образом гарантируя конкурентоспособность и стабильность.
Интерес общества состоит в том, чтобы долгосрочные экономические и социальные вознаграждения не приносились в жертву ради краткосрочных финансовых прибылей.
Предыдущие экологические меры имели тенденцию быть изгоняющими по характеру с акцентом на «тебе не следует», вместо желательного
10 руб.
Инженерная графика. Задание №60. Вариант №8. Колода
Чертежи
: 19 марта 2020
Все выполнено в программе КОМПАС 3D v16.
Боголюбов С.К. Индивидуальные задания по курсу черчения.
Задание 60. Вариант 8. Колода.
Тема: Простые разрезы. Прямоугольная изометрическая проекция.
По двум данным проекциям построить третью проекцию с применением разрезов, указанных в схеме, изометрическую проекцию учебной модели с вырезом передней четверти. Нанести размеры.
В состав работы входят три файла:
– 3D модель детали;
- ассоциативный чертеж с выполненными разрезами согласно схеме и нанесен
80 руб.
Разработка технологии восстановления деталей автотракторной техники с применением электромеханической обработки в условиях ремонта ООО «Авангард» Майнского района Ульяновской области
Рики-Тики-Та
: 9 декабря 2015
На дипломный проект студента 6 курса инженерного факультета Ульяновской государственной сельскохозяйственной академии Абрамова Андрея Алек-сандровича на тему «Разработка технологии восстановления деталей автотрак-торной техники с применением электромеханической обработки в условиях ре-монта ООО «Авангард» Майнского района Ульяновской области», выполненный на кафедре «Материаловедение и технология машиностроения» под руководством профессора Надольского Вячеслава Олеговича.
Общая характеристика р
825 руб.