Теория вероятности и математическая статистика. Экзамен. Билет № 3
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Основные соединения и формулы комбинаторики.
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения .
Найти
5. Какова вероятность того, что при 5-кратной передаче сигнал будет принят менее 2 раз, если вероятность приёма при одной передаче 0,3?
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения .
Найти
5. Какова вероятность того, что при 5-кратной передаче сигнал будет принят менее 2 раз, если вероятность приёма при одной передаче 0,3?
Дополнительная информация
Оценка:Хорошо
Дата оценки: 15.12.2011
Дата оценки: 15.12.2011
Похожие материалы
Теория вероятностей и математическая статистика, Экзамен, Билет №3
artinjeti
: 9 апреля 2018
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральн
150 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Nadyuha
: 29 ноября 2017
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интеграль
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
DENREM
: 19 марта 2014
Билет №3.
Теоретический вопрос. Схема Бернулли и Формула Бернулли.
Практическое задание. Оцените распределение случайной величины по выборке:
Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
120 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №3
freelancer
: 10 апреля 2016
Задание 1.
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
Задание 2.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
Задание 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -2 -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
Задание 4.
Непреры
100 руб.
Экзамен по дисциплине «Теория вероятности и математическая статистика». Билет № 3
sanco25
: 6 февраля 2012
1. Основные соединения и формулы комбинаторики.
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек., равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения.
Найти с, M(X).
5.
90 руб.
Теория вероятностей и математическая статистика. Экзамен
Ane4ka666
: 31 октября 2015
1. Дисперсия случайной величины и её свойства.
2. Из колоды в 36 карт извлекают четыре карты. Какова вероятность, что все они одной масти?
100 руб.
Экзамен. Теория вероятности и математическая статистика
елена85
: 4 декабря 2014
Билет 7
1. Повторение независимых испытаний. Формула Бернулли.
2. В урне 15 шаров: 9 красных и 6 синих. Найти вероятность того, что два наугад вынутых шара будут одного цвета.
150 руб.
Теория вероятностей и математическая статистика. 2-й семестр. Экзамен. Билет №3
Ирина16
: 10 февраля 2017
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -2 -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотност
200 руб.
Другие работы
Лабораторная работа №3. Управление проектами.
studypro3
: 17 июля 2020
Лабораторная работа №3 «Построение графика нарастания затрат при осуществле-нии проекта»
Вариант 1
Код предше-ствующей ра-боты Шифр работы Продолжитель-ность, дн. Стоимость материа-лов, руб. Возобновляемые ресурсы
Число, ед. Ставка, руб./час.
раб. маш. раб. маш.
- A 40 6650 10 3 15 133
- B 16 1900 19 5 - 285
- C 24 13300 19 5 - 475
A D 56 8740 29 8 - 475
A,B E 64 16055 58 16 - 285
B,C F 32 23940 29 8 - 285
F G 44 2280 19 5 - 133
E,F H 8 10260 29 8 - 133
D,E I 24 7600 10 3 - 285
Денежные
500 руб.
Приспособление для контроля параллельности
Bernard1611
: 25 июня 2022
Приспособление для контроля параллельности
1. * Размер для справок
2. Покрытие нерабочих поверхностей Эмаль ЭМ.НЦ-221 сине-серый, II п
ТУ6-1-1021-70
3. Маркировать обозначение приспособления
4. Приспособление предназначено для контроля параллельности
Формат А1
350 руб.
Контрольная работа по дисциплине: Программно-конфигурируемые сети. Вариант 4
IT-STUDHELP
: 30 сентября 2022
1. Вариант задания определить двумя последними цифрами пароля. Если число, образованное этими цифрами, превышает 25, то номер вариант определяется суммой двух последних цифр пароля.
2. Построить модель замкнутой однородной СеМО, узлами которой являются узлы инфокоммуникационной системы, топология и параметры которой заданы в таблице 3.
Примечание 2: каналы, связывающие сетевые устройства, не моделируются узлами СеМО, но количество прилегающих к каждому устройству линий связи должно соответствов
950 руб.
100 руб.