Дискретная математика. Контрольная работа. 14 вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
No1. Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
No2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(c,1),(c,3),(c,4)}; P2 = {(1,4),(2,3),(2,1),(3,4),(4,2)}.
No3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | 2•x = 3•y}.
No4. Доказать утверждение методом математической индукции:
(11n+1 + 12 2n–1) кратно 133 для всех целых n > 0.
No5. Восемь сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, немецкого, испанского и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в двух совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
No6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 10 или 22? б) делящихся ровно на одно из этих трех чисел?
No7. Найти коэффициенты при a=x3•y4•z, b=x4•y•z, c=x4•z2 в разложении (2•x+3•y2+5•z)6.
No8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 7•an+1 + 12•an = 0• и начальным условиям a1= –15, a2=15.
No9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
Полностью задания на рисунке.
No2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,3),(a,4),(c,1),(c,3),(c,4)}; P2 = {(1,4),(2,3),(2,1),(3,4),(4,2)}.
No3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | 2•x = 3•y}.
No4. Доказать утверждение методом математической индукции:
(11n+1 + 12 2n–1) кратно 133 для всех целых n > 0.
No5. Восемь сотрудников фирмы направляются на изучение иностранного языка, причем нужно распределить их для изучения английского, немецкого, испанского и французского языков (каждый изучает только один язык). Сколько существует различных способов такого распределения? Сколькими способами они могут устроиться заниматься в двух совершенно одинаковых комнатах библиотеки (не менее одного в комнате)?
No6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 10 или 22? б) делящихся ровно на одно из этих трех чисел?
No7. Найти коэффициенты при a=x3•y4•z, b=x4•y•z, c=x4•z2 в разложении (2•x+3•y2+5•z)6.
No8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 7•an+1 + 12•an = 0• и начальным условиям a1= –15, a2=15.
No9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
Полностью задания на рисунке.
Дополнительная информация
Оценка:Зачет
Дата оценки: 27.12.2011
Дата оценки: 27.12.2011
Похожие материалы
Дискретная математика. Контрольная работа. Вариант №14 (Вариант №4).
sibgutido
: 25 января 2013
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={2,4,6,8,10}
A={2,4} ;B={4,6,8} ;C={2,6,10} ;D={4}
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимал
98 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №14.
teacher-sib
: 19 ноября 2016
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
250 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №14
Елена22
: 28 февраля 2016
Задача I (см. скрин)
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна:
Задача II
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня».
Задача III (см. скрин)
Для булевой функции f(x,y,z) найти методом преобразования минимальную ДН
400 руб.
СИБГУТИ, Дискретная математика, Контрольная работа. Вариант №14
fred_student
: 2 октября 2014
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна;
No2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
100 руб.
Контрольная работа №1. Дискретная математика. Вариант №14
58197
: 27 марта 2013
I. Задано универсальное множество U и множества A,B,C,D . Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции f(x,y,z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ
30 руб.
Контрольная работа по дискретной математике. 14 (4) вариант. ДО СибГУТИ
igoriceg
: 31 марта 2016
Задание No1
Задано универсальное множество U и множества A,B,C,D Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {2,4,6,8,10}
A = {2,4} B = {4,6,8} C = {2,6,10} D = {4}
A ∩ D ̅; б) (A∪C ) ̅ ; в) (B \ C) ∩ D; г)(A\B) ∩ U\D; д)(( B) ̅∩ C) ̅.
Задание No2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корен
80 руб.
Контрольная работа по дискретной математике
ty4ka
: 23 сентября 2020
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
200 руб.
Дискретная математика, контрольная работа
Александра74
: 15 декабря 2019
No1. а) (A\B) (A\C) = A \ (BC) б) (AB)C=(AC)(BC).
No2.Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1.....
No3.Задано бинарное отношение P; найти его область определения и область значений......
No4.Доказать утверждение методом математической индукции:
(7n – 1) кратно 6 для всех целых n 1. ....No10.....
100 руб.
Другие работы
Контрольная работа №1 по дисциплине: Системное программное обеспечение
lebed-e-va
: 14 декабря 2015
Задание 8:
1 Написать и отладить программу на языке ассемблера. В программе описать процедуру, которая выводит на экран четные элементы массива. Параметры передавать следующим образом:
- в BX – смещение массива;
- в CX – число элементов в массиве.
В основной программе вызвать описанную процедуру для двух разных массивов.
2 В файле myProg.asm наберем следующий программный код:
TITLE KR ; название программы
.MODEL small ; отводим под стек и под данные по 64 Кб
150 руб.
Державне регулювання фінансового ринку України
alfFRED
: 27 октября 2013
Адміністративне регулювання фондового ринку, зокрема ринку цінних паперів, здійснюється на основі Закону України "Про державне регулювання ринку цінних паперів в Україні". Цей закон визначає правові засади здійснення державного регулювання ринку цінних паперів і державного контролю за випуском і обігом цінних паперів та їх похідних в Україні. Згідно з цим законом державне регулювання ринку цінних паперів — це здійснення державою комплексних заходів щодо впорядкування, контролю, нагляду за ринком
10 руб.
Радиотелескопы и космические телескопы
alfFRED
: 12 августа 2013
Первым космическое радиоизлучение зарегистрировал Карл Янский в 1931 году. Его радиотелескоп представлял собой вращающуюся деревянную конструкцию, установленную на автомобильных колесах для исследования помех радиотелефонной связи на длинах волн λ = 4 000 м и λ = 14,6 м. К 1932 году стало ясно, что радиопомехи приходят из Млечного Пути, где расположен центр Галактики. А в 1942 было открыто радиоизлучение Солнца. Любой радиотелескоп по принципу своего действия похож на оптический: он собирает изл
19 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 1.48
Z24
: 14 ноября 2025
Определить силу, затрачиваемую на преодоление трения в подшипнике при вращении вала. Частота вращения вала n=10 с-1. Диаметр шейки (цапфы) вала d=40 мм, длина l=100 мм, толщина слоя смазки между цапфой и подшипником δ=0,2 мм. Кинематический коэффициент вязкости масла ν=0,8·10-4 м²/c, плотность ρ=920 кг/м³. Считать, что вал вращается в подшипнике соосно, а скорость движения жидкости в слое масла изменяется по линейному закону.
120 руб.