Теория вероятностей, математическая статистика и случайные процессы. Контрольная работа. 4 (14) вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Текст 1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? p= 0,7, k = 5
Текст 3. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5, L=2, M=4, N=4, P=3, R=4
Текст 4. В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K=7, P=0,6, R=2
Текст 5. Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
a=0, b=4, альфа=1, бэта=2, р=0,6, F(x)=2cx
Текст 7. Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
лямбда=0,3
Текст 3. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5, L=2, M=4, N=4, P=3, R=4
Текст 4. В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K=7, P=0,6, R=2
Текст 5. Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p.
a=0, b=4, альфа=1, бэта=2, р=0,6, F(x)=2cx
Текст 7. Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
лямбда=0,3
Дополнительная информация
Оценка:Зачет
Дата оценки: 23.01.2012
Рецензия: замечаний нет
Дата оценки: 23.01.2012
Рецензия: замечаний нет
Похожие материалы
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей и математическая статистика, и случайные процессы
style2off
: 12 января 2016
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Контрольная работа. Теория вероятностей математическая статистика и случайные процессы. Вариант №0
AlexBrookman
: 3 февраля 2019
Задача 1
Текст 1. Вероятность соединения при телефонном вызове равна 0,8. Какова вероятность, что соединение произойдёт только при 3 - ем вызове?
Задача 2
Текст 3. В одной урне 5 белых шаров и 6 чёрных шаров, а в другой – 6 белых и 8 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
Текст 4. В типографии имеется 5 печатных ма
150 руб.
Теория вероятностей математическая статистика и случайные процессы. Контрольная работа. Вариант №5
sibguter
: 5 июня 2018
No1 Текст 2: Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
p=0.3, k=4
No2 Текст 3: В одной урне K(4) белых шаров и L(3) чёрных шаров, а в другой – M(5) белых и N(3) чёрных. Из первой урны случайным образом вынимают P(3) шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R(2) шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=4, L=3, M=5, N=3, P=3, R=2
49 руб.
Другие работы
РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА по АС. Вариант №4.1.
anderwerty
: 31 января 2014
Расчетно-графическая работа (РГР) является практической компонентой курса АСУ. В данной РГР предлагается провести анализ динамических свойств одного из 4 вариантов (см. рис. 1) структурных схем АСУ. Каждая структура содержит по 3 блока. Динамические свойства блоков задаются указанием вида их передаточных функций (K1(р), K2(р), K3(р)). Таких функций для каждой структуры дано по 3 варианта. При этом общее число вариантов задания составляет 12. Чтобы выполнить задание, необходимо изучить теоретичес
10 руб.
ДБН Б.1.1-5: 2007 Склад, зміст, порядок розроблення, погодження та затвердження розділу інженерно-технічних заходів цивільного захисту (цивільної оборони) на мирний час у містобудівній документації (II частина))
Lokard
: 3 июля 2013
Ці Норми встановлюють вимоги до складу, змісту, порядку розроблення, погодження та затвердження розділу інженерно-технічних заходів цивільного захисту (цивільної оборони) у містобудівній документації (далі - ІТЗ ЦЗ (ЦО)).
Ці Норми обов'язкові для застосування органами державної виконавчої влади, органами місцевого самоврядування, замовниками (інвесторами), проектувальниками.
ДБН складається з двох частин:
перша частина - це склад, зміст, порядок розроблення, погодження та затвердження розділу ІТ
5 руб.
Уплотнение торцовое обратного нагнетания Сборочный чертеж центробежного насоса ЦНС 90-1100-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 27 мая 2016
Уплотнение торцовое обратного нагнетания Сборочный чертеж центробежного насоса ЦНС 90-1100-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
400 руб.
Сравнительный анализ операционных систем: Windows, Linux, MacOS
Lokard
: 9 октября 2013
Введение
Сравнительный анализ операционных систем
Windows XP
Альтернативные операционные системы
Linux
Mac OS
Общий вывод:
Заключение
Список литературы
Оглавление
Введение
Операционная система — это комплекс взаимосвязанных системных программ, которые загружаются при включении компьютера и постоянно находятся в памяти компьютера. Они производят диалог с пользователем, осуществляют управление компьютером, его ресурсами (оперативной памятью, местом на дисках и т.д.), запускают другие (прикладные
10 руб.