Экзамен. Алгебра и Геометрия.
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Скалярное произведение векторов и его свойства.
Скалярным произведением векторов и называется число, равное произведению их модулей на косинус угла между ними:
2. Классификация кривых второго порядка.
Кривая второго порядка – это геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида , в котором по крайней мере один из коэффициентов отличен от нуля.
3. Найти значение матричного многочлена , если , где .
4. Найти уравнение плоскости, проходящей через прямую параллельно прямой .
5. Найти площадь параллелограмма, построенного на векторах и , если .
Площадь параллелограмма, построенного на векторах , вычисляем как модуль их векторного произведение:
Скалярным произведением векторов и называется число, равное произведению их модулей на косинус угла между ними:
2. Классификация кривых второго порядка.
Кривая второго порядка – это геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида , в котором по крайней мере один из коэффициентов отличен от нуля.
3. Найти значение матричного многочлена , если , где .
4. Найти уравнение плоскости, проходящей через прямую параллельно прямой .
5. Найти площадь параллелограмма, построенного на векторах и , если .
Площадь параллелограмма, построенного на векторах , вычисляем как модуль их векторного произведение:
Дополнительная информация
2010г. Алгебра и Геометрия. Экзамен. Билет №19. Оценка хорошо. Агульник В.И.
Похожие материалы
Алгебра и геометрия. Экзамен
pepol
: 28 января 2013
БИЛЕТ № 13.
1. Теорема Кронекера - Капелли.
Система линейных алгебраических.....
2. Взаимное расположение двух прямых в пространстве.
Взаимное расположение двух прямых в пространстве характеризуются следующими
3. Решить матричное уравнение:
200 руб.
Алгебра и геометрия. Экзамен.
andrshap
: 31 мая 2010
1. Декартова система координат. Направляющие косинусы вектора.
2. Гипербола и её свойства.
3. Доказать, что векторы
образуют базис и найти координаты вектора в этом базисе.
4. Найти обратную матрицу для матрицы
5. Найти координаты фокусов эллипса, если его малая полуось равна 5, а эксцентриситет равен 12/13.
5 руб.
Экзамен по алгебре и геометрии
shpion1987
: 27 января 2010
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
1 курс «Алгебра и геометрия». Экзамен
БИЛЕТ № 20
1. Векторное произведение векторов, его свойства.
2. Преобразования системы координат на плоскости: параллельный перенос и поворот.
3. Решить уравнение , где
А = , В = .
4. Найти проекцию точки А (5;2;-1) на плоскость
5. Найти площадь параллелограмма, построенного на векторах и , где .
50 руб.
Экзамен по алгебре и геометрии
kapa
: 21 января 2010
Экзамен
по дисциплине
«Алгебра и геометрия»
Билет № 19
1. Скалярное произведение векторов и его свойства
2. Классификация кривых второго порядка
3. Найти значение матричного многочлена F (A),
4. Найти уравнение плоскости, проходящей через прямую
5. Найти площадь параллелограмма, построенного на векторах
200 руб.
Экзамен по дисциплине: алгебра и геометрия
Deva2009
: 2 октября 2013
БИЛЕТ № 2
1. Основные свойства определителей.
2. Линейные операции над векторами и их свойства.
Под линейными операциями над векторами понимают операции сложения и вычитания векторов, а также умножение вектора на число.
3. Найти проекцию т. М0 (-8;12) на прямую, проходящую через точки
А (2;-3) и В(-5; 1).
100 руб.
Экзамен "Алгебра и геометрия". Билет №7
max12
: 2 октября 2020
1. Прямая линия на плоскости. Различные виды уравнений прямой.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(7;2;-1), B(0;4;-1), C(8;-7;2), D(5;-5;5).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
50 руб.
Алгебра и геометрия. Билет №5. Экзамен.
321
: 13 октября 2019
Задание экзаменационной работы на скриншоте!!!
Билет № 5
1. Обратная матрица, ее вычисление и свойства. Матричные уравнения. Решение систем линейных уравнений с помощью обратной матрицы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
Произведём сложение двух векторов и
4. Даны координаты вершин пирамиды
A(1;3;-2), B(-1;-3;0), C(0;2;0), D(-1;0;2).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
120 руб.
Алгебра и Геометрия Вариант № 4 Экзамен
Gila
: 15 октября 2017
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Решить матричное уравнение ,
Даны векторы
2. Даны координаты вершин пирамиды
A(2;4;-1), B(8;-1;0), C(2;3;-4), D(-1;2;-2).
3. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет для функции
250 руб.
Другие работы
Английский язык
Анастасия160
: 19 января 2016
Тест.
Вариант 2
I.Поставьте слова в алфавитном порядке:
II.Разделите слова на две группы с долгим [ju:] и кратким [ᴧ]:
III.Образуйте множественное число существительных:
IV.Который час:
V.Заполните пропуски, используя don’t или doesn’t:
VI.Составьте из данных слов вопросительные предложения:
VII.Выберите нужную форму глагола:
VIII.Выберите вопросительное слово, которое следует использовать в вопросе к подчеркнутому
слову:
IX.Вставьте притяжательные местоимения из данных в скобках:
X.Вставьте wa
70 руб.
Гидравлика Пермская ГСХА Задача 85 Вариант 1
Z24
: 6 ноября 2025
В тупиковый трубопровод, состоящий из магистрали АВ и боковых отводов ВС и BД, вода поступает из водонапорной башни в пункты С и Д. Отметка уровня воды в башне НБ. Определить:
Сколько воды поступает в каждый пункт, т.е. QC и QД?
Пьезометрическую высоту в пункте С (ΔПC) при известной пьезометрической высоте в пункте D (ΔПД).
150 руб.
Контрольная работа по сопромату для студентов технических специальностей
korhokar
: 11 февраля 2014
Задачи 1,3,5,7,9, 10, Методичка приложена.
1. Для бруса ступенчато – переменного сечения и находящегося под действием продольных сил, используя метод сечений, построить эпюру нормальных сил N. Из условия прочности определить диаметры круглых поперечных сечений. Построить эпюры нормальных напряжений и продольных перемещений. Материал стержня – сталь с модулем продольной упругости Е= 2*105 Мпа.
Дано: P = 150 кН, а= 0,4 м, в= 0,5 м, с= 0,5 м;
3. Абсолютно жесткий брус закреплен с помощью шарнир
800 руб.
Теоретическая механика СамГУПС Самара 2020 Задача К2 Рисунок 0 Вариант 5
Z24
: 9 ноября 2025
Сложное движение точки
По заданному уравнению вращения φ = f1(t) тела А и уравнению движения s = ОМ = f1(t) точки М относительно тела А определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = t1. Схема к задаче и исходные данные к ней определяются в соответствии с шифром по рис. К2.0–К2.9 и таблице К2. Точка М показана в направлении положительного отсчета координаты s. Положительное направление отсчета угла φ указано стрелкой.
250 руб.