Экзамен по дисциплине «Теория вероятности и математическая статистика». Билет № 3

Цена:
90 руб.

Состав работы

material.view.file_icon
material.view.file_icon Экзамен по ТВиМС. Билет 3 группа СДТ.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Основные соединения и формулы комбинаторики.

2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?

3. Среднее число вызовов, поступающих на АТС в 1 сек., равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.

4. Случайная величина Х имеет плотность распределения.
Найти с, M(X).

5. Какова вероятность того, что при 5-кратной передаче сигнал будет принят менее 2 раз, если вероятность приема при одной передаче 0,3?

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика
Вид работы: Экзамен
Оценка:Хорошо
Дата оценки: 30.01.2008
Агульник Владимир Игоревич
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №3
Задание 1. 1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли Задание 2. 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? Задание 3. Дискретная случайная величина имеет следующий ряд распределения Х -2 -1 0 5 10 р 0,11 0,22 0,11 а 0,04 Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. Задание 4. Непреры
User freelancer : 10 апреля 2016
100 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №3 promo
Экзамен по дисциплине: Теория вероятностей и математическая статистика
Задание 1. 1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли Задание 2. 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? Задание 3. Дискретная случайная величина имеет следующий ряд распределения Х -2 -1 0 5 10 р 0,11 0,22 0,11 а 0,04 Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. Задание 4. Непрерыв
User Кошка : 8 апреля 2016
180 руб.
Экзамен по дисциплине: "Теория вероятностей и математическая статистика"
1. Понятие случайного события. Виды событий. Операции над событиями. 2. Монета бросается 3 раза. Какова вероятность, что все три раза она упадёт одной стороной? 3. Величина детали – случайная величина распределенная нормально (среднее – 10 м, среднее квадратическое отклонение – 0,25 м). Какова вероятность того, что она будет превышать среднее значение не более чем на 0,5 м.? 4. Случайная точка (X,Y) распределена равномерно в области {0<x<2, -1<y<1} Найти плотность распределения компонент. 5.
User 4eJIuk : 13 февраля 2012
70 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №3
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? 3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральн
User artinjeti : 9 апреля 2018
150 руб.
Теория вероятностей и математическая статистика, Экзамен, Билет №3
Теория вероятностей и математическая статистика. Экзамен. Билет №3
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли 2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара? 3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интеграль
User Nadyuha : 29 ноября 2017
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Теория вероятностей и математическая статистика. Экзамен. Билет №3
Билет №3. Теоретический вопрос. Схема Бернулли и Формула Бернулли. Практическое задание. Оцените распределение случайной величины по выборке: Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698 - выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению - оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода - проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
User DENREM : 19 марта 2014
120 руб.
Теория вероятности и математическая статистика. Экзамен. Билет № 3
1. Основные соединения и формулы комбинаторики. 2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком? 3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов. 4. Случайная величина Х имеет плотность распределения . Найти 5. Каков
User radist24 : 15 декабря 2011
70 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Онлайн
Описательная статистика 1. Совокупность объектов, из которых производится выборка, называется ... совокупностью. выборочной генеральной универсальной Дискретные случайные величины 2. Вероятность попадания случайной величины X в промежуток от а до B (включая а) выражается формулой. Дискретные случайные величины 3. Значение дискретной случайной величины, имеющее самую большую вероятность, носит название... мода математическое ожидание максимум Корреляционный и регрессионный анализ 4. Если значе
User IT-STUDHELP : 9 декабря 2019
400 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Онлайн
Теплотехника МГУПП 2015 Задача 3.4 Вариант 29
Определить часовой расход натурального и условного топлива на выработку в котлоагрегате типа ДЕ-10-14-ГМ влажного насыщенного пара с избыточным давлением ризб и степенью сухости х, если: паропроизводительность котла D; процент продувки Пр; температура питательной воды tпв; низшая теплота сгорания топлива Qрн; коэффициент полезного действия (брутто) при номинальной производительности ηбрном. Исходные данные приведены в таблицах 15 и 16. Примечания: Располагаемую теплоту принять равн
User Z24 : 8 января 2026
250 руб.
Теплотехника МГУПП 2015 Задача 3.4 Вариант 29
Работоспособность человека и её динамика.
Негативный результат взаимодействия человека со средой обитания определяют опасности - негативные воздействия, внезапно возникающие, периодически или постоянно действующие в системе «человек - среда обитания». Опасность - негативное свойство живой и неживой материи, способное причинить ущерб самой материи: людям, природной среде, материальным ценностям. Опасность - центральное понятие в безопасности жизнедеятельности. Различают опасности естественного, техногенного и антропогенного происхождения
User ostah : 4 февраля 2015
22 руб.
Житие святого апостола Фаддея
Святой Апостол Фаддей происходил из города Эдесса(1); родом он был еврей и в совершенстве знал Священное Писание Ветхого Завета. Во дни святого Иоанна Крестителя святой Фаддей пришел в Иерусалим; услышав здесь проповедь Предтечи Господня и увидав ангельскую жизнь его, Фаддей весьма изумился и принял крещение от Иоанна Предтечи. Вскоре после того святой Фаддей увидел Господа нашего Иисуса Христа, пребывавшего во плоти и обитавшего среди людей, услышал также учение Его и увидел дивные чудеса, сове
User Qiwir : 8 августа 2013
5 руб.
up Наверх