Контрольная работа №2 по дисциплине: Математический анализ. Вариант: 05
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: Grad z в точке A
Производную в точке А по направлению вектора а
z=5x^2+6xy A(2;1),a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Найти: Grad z в точке A
Производную в точке А по направлению вектора а
z=5x^2+6xy A(2;1),a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Дополнительная информация
2012. зачет
Похожие материалы
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
xtrail
: 12 апреля 2013
Вариант №2
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, x=9-y^(2), x^(2)+y^(2)=9
650 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8.
ДО Сибгути
: 14 февраля 2016
Задача No1
Дано:
Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , .
Задача No2
Дано:
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если .
Задача No3
Дано:
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , .
Задача No4
Дано:
Даны векторное поле и плоскость , которая со
70 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9.
ДО Сибгути
: 10 февраля 2016
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
70 руб.
Контрольная работа №2 по дисциплине: Математический анализ вариант 3
vereney
: 9 марта 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной р
50 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
xtrail
: 2 апреля 2013
Вариант № 1
Задания:
1. Вычертить область плоскости по данным условиям (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
300 руб.
Другие работы
Моделирование телекоммуникационных систем. Вариант №15
steshenko
: 26 февраля 2018
Задание:
1.Расскажите о методике CRAMM. Что она позволяет делать? Опишите особенности использования.
2.Раскройте основные положения Международного стандарта ISO/IEC 15408. Дайте краткую характеристику части 2. (Функциональные требования безопасности). Привести примеры.
50 руб.
Курсовая работа по дисциплине: Визуальное программирование и человеко-машинное взаимодействие (часть 2). Вариант №8
IT-STUDHELP
: 4 мая 2019
• Провести первые 4 этапа проблемно-центрированного дизайна (до чернового описания включительно) программного продукта, помогающего пользователю в решении описанной ниже задачи (10 вариантов). Постарайтесь найти одного–двух человек, которые могут быть заинтересованы в решении предложенной проблемы. Дайте их краткое описание (возраст, образование, профессия, навыки и т.п.), ваше понимание задач и подзадач, решение которых будет поддерживать разрабатываемая программа. Ответьте на вопрос, что вы
165 руб.
Топонимы как свидетельства протоисторического ландшафта в Новгороде
Lokard
: 26 августа 2013
Исторический ландшафт Новгорода уже не раз привлекал внимание исследователей, и все же до сих пор этот предмет не входит в сферу постоянных научных интересов. Тем не менее отсутствие данных геоморфологии становится все более ощутимым, и сейчас уже никого не нужно убеждать в необходимости применения геологических методов в практике архитектурной реставрации и археологических изысканий. И дело не только в использовании собственно естественнонаучного анализа для уяснения стратиграфии почв, определе
15 руб.
Теплотехника 5 задач Задача 2 Вариант 44
Z24
: 3 января 2026
Определить индикаторную Ni и эффективную Ne мощность четырехтактного двигателя внутреннего сгорания по его конструктивным параметрам и среднему индикаторному давлению рi. Диаметр цилиндра двигателя D, ход поршня S, угловая скорость коленчатого вала Ω, мин-1, число цилиндров Z, среднее индикаторное давление рi и механический КПД ηм выбрать из табл. 2.
Ответить на вопросы:
Каковы основные различия в работе двухтактного и четырехтактного двигателей внутреннего сгорания?
Каковы преимущества и
200 руб.