Контрольная работа №2 по дисциплине: Математический анализ. Вариант: 05

Цена:
80 руб.

Состав работы

material.view.file_icon
material.view.file_icon кр2.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: Grad z в точке A
 Производную в точке А по направлению вектора а
z=5x^2+6xy A(2;1),a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.

Дополнительная информация

2012. зачет
Контрольная работа №2 по дисциплине: Математический анализ
вариант№7 1. Вычертить область плоскости по данным условиям: 2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. 3. При помощи вычетов вычислить данный интеграл по контуру.
User pepol : 5 декабря 2013
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
Вариант №2 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, x=9-y^(2), x^(2)+y^(2)=9
User xtrail : 12 апреля 2013
650 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
User konst1992 : 27 января 2018
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
User konst1992 : 27 января 2018
150 руб.
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8.
Задача No1 Дано: Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , . Задача No2 Дано: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если . Задача No3 Дано: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , . Задача No4 Дано: Даны векторное поле и плоскость , которая со
User ДО Сибгути : 14 февраля 2016
70 руб.
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8. promo
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9.
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
User ДО Сибгути : 10 февраля 2016
70 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9. promo
Контрольная работа №2 по дисциплине: Математический анализ вариант 3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Исследовать сходимость числового ряда. 5. Найти интервал сходимости степенного ряда 6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной р
User vereney : 9 марта 2014
50 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
Вариант № 1 Задания: 1. Вычертить область плоскости по данным условиям (см.скрин) 2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин) 3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
User xtrail : 2 апреля 2013
300 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
Опора. Задание №77. Вариант №2
Задание 77 вариант 2 Опора Опора Задание 77 вариант 2 Выполнить чертеж с исправлением допущенных на нем ошибок. Чертеж и 3d модель выполнены в AutoCAD 2013 возможно открыть с 2013 по 2020 версиях. Помогу с другими вариантами.Пишите в Л/С.
User bublegum : 25 декабря 2020
150 руб.
Опора. Задание №77. Вариант №2 promo
Контрольная работа на тему: Менеджмент как вид деятельности и система управления
Контрольная работа на тему Менеджмент как вид деятельности и система управления Содержание контрольной работы Введение 1. Менеджмент и управление 2. Менеджмент как наука и искусство 3. Современная система взглядов на менеджмент Задание. Построить дерево знаний менеджмента Заключение Список использованных источников
User studypro : 3 мая 2016
70 руб.
Университет «Синергия» Коллективная разработка приложений (Темы 1-7 Итоговый тест)
Университет «Синергия» Коллективная разработка приложений (Темы 1-7 Итоговый тест) Московский финансово-промышленный университет «Синергия» Тест оценка ОТЛИЧНО 2025 год Ответы на 12 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: УЧЕБНЫЕ МАТЕРИАЛЫ Коллективная разработка приложений Важно!. Информация по изучению курса Тема 1. Гибкая методология разработки программного обеспечения Тема 2. Роли Тема 3. Действия Тема 4. Знакомство с Team Environment
User Synergy2098 : 16 марта 2025
198 руб.
promo
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 11.11
Определить глубину воды в трапецеидальном канале (рис. 11.1) при следующих данных: расход Q = 4,5 м³/с, ширина канала по дну b = 3 м, коэффициенты заложения откосов m1 = 1,5, m2 = 2,5, коэффициент шероховатости n = 0,025, уклон дна канала i = 0,0045.
User Z24 : 18 октября 2025
150 руб.
Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Задача 11.11
up Наверх