Контрольная работа по дисциплине: «Математический анализ». Вариант: №1
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
A(1;1), a(2;1).
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
.
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
A(1;1), a(2;1).
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
.
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
существенных замечаний нет. Ваша работа зачтена.
Агульник Владимир Игоревич
Математический анализ (2 сем.) Вид работы: Контрольная работа 1 Оценка:Зачет Дата оценки: 20.01.2012
Агульник Владимир Игоревич
Математический анализ (2 сем.) Вид работы: Контрольная работа 1 Оценка:Зачет Дата оценки: 20.01.2012
Похожие материалы
Контрольная работа по дисциплине: «Математический анализ»
татьяна89
: 27 апреля 2013
Задача № 3.
Найти пределы функций:
. Задача № 4.
Найти значение производных данных функций в точке x=0:
. Задача № 5.
Провести исследование функций с указанием
1) области определения и точек разрыва; 2) экстремумов; 3) асимптот.
По полученным данным построить графики функций.
25 руб.
Контрольная работа по дисциплине: Математический анализ
servier
: 28 декабря 2011
Задача 1. Найти пределы функций:
Вариант 3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант 4.2
15 руб.
Контрольная работа по дисциплине математический анализ
alex22911
: 13 февраля 2010
СИБГУТи Контрольная работа
по математическому анализу
Найти пределы функций
Найти значение производных данных функций в точке
Провести исследование функции с указанием:
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функций.
Найти неопределенные интегралы
Во время решения контрольной работы была использована следующая литература:
1) Конспект лекций.
2) Справочник по высшей математике.
3) Справочник по школьной математике.
4) Методич
100 руб.
Контрольная работа по дисциплине «Математический анализ»
kapa
: 21 января 2010
Контрольная работа
по дисциплине
«Математический анализ»
Вариант №3
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Контрольная работа по дисциплине Математический анализ. Вариант №6
wertystn
: 28 января 2019
1. Найти пределы
2. Найти производные данных функций
3. 3. Исследовать методами дифференциального исчисления функцию
70 руб.
Контрольная работа по дисциплине: Математический Анализ. Вариант №9.
ДО Сибгути
: 27 декабря 2017
Вариант № 9
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - часть дуги окружности , , лежащая в первом квадранте и «пробегаемая» против хода часовой стрелки.
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
50 руб.
Контрольная работа По дисциплине: Математический анализ, вариант №4
ннааттаа
: 23 августа 2017
Задание 1. Найти пределы функций
Задание 2. Найти значение производной данной функции в точке х=0;
Задание 3. Провести исследование функции с указанием;
а) области определения и точек разрыва;
б) экстремумов
в) асимптот
Задание 4. Найти неопределенные интервалы:
Задание 5. Вычислить площадь области, заключенных между линиями;
300 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №1.
agentorange
: 15 февраля 2017
Вариант № 1
1 Найти пределы
а) б) в) .
2 Найти производные данных функций
а) б)
в) г) .
3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4 Дана функция . Найти все её частные производные второго порядка.
5 Найти неопределенные интегралы
а) б)
в) г) .
120 руб.
Другие работы
Вакуум-насос - 02.018 СБ
.Инженер.
: 2 ноября 2022
В.А. Леонова, О.П. Галанина. Альбом сборочных чертежей для деталирования и чтения. Вариант 02.018 - Вакуум-насос. Сборочный чертеж. Деталирование. Модели.
Вакуум-насос отсасывает воздух из замкнутого пространства машины и выбрасывает его в атмосферу.
Данный поршневой насос двустороннего действия. Цилиндр 1, соединен с дном 2 и крышкой 9 болтами 19. В дне и крышке имеются отверстия, в которые ввернуты штуцера 15 и 18. Пробковый кран 27 в крышке предназначен для присоединения измерительного прибо
1000 руб.
Армированное изделие. Вариант 11 ЧЕРТЕЖ
coolns
: 7 февраля 2025
Армированное изделие. Вариант 11 ЧЕРТЕЖ
Армированное изделие. Вариант 11 СБ
Армированное изделие. Вариант 11 спецификация
Армированное изделие. Вариант 11 3d сборка
Армированное изделие. Вариант 11 чертежи
01 Корпус
02 Контакт
Все чертежи и 3d модели (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в
150 руб.
Задача по физике (развернутое решение в Word)
Григорий12
: 3 марта 2017
Масса воздушного шара вместе с канатом, волочащимся по земле, равна m. Выталкивающая сила, действующая на шар, равна F, коэффициент трения каната о землю равен μ. Сила сопротивления воздуха, действующая на шар, пропорциональна квадрату скорости: f = αv2. Найти скорость шара относительно земли, если навстречу дует горизонтальный ветер со скоростью u.
50 руб.
Физические основы электроники контрольная 1 вариант
Антон28
: 8 августа 2025
Физические основы электроники контрольная 1 вариант
300 руб.