Контрольная работа по дисциплине: Математический анализ. Вариант 6

Цена:
60 руб.

Состав работы

material.view.file_icon
material.view.file_icon математический анализ 2 семестр контрольная работа.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

кр№1 2семестр вариант 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле и плоскость (P): , которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.

Дополнительная информация

2012,Агульник В.И. зачет
Контрольная работа по дисциплине Математический анализ. Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. 3. Исследовать методами дифференциального исчисления функцию
User wertystn : 28 января 2019
70 руб.
Контрольная работа по дисциплине Математический анализ. Вариант №6
Контрольная работа по дисциплине «Математический анализ» Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график. 4. Дана функция. Найти все её частные производные второго порядка. 5. Найти неопределенные интегралы
User Nadyuha : 15 декабря 2016
200 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Контрольная работа по дисциплине : Математический анализ Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User nastenakosenkovmailru : 8 марта 2015
43 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
User Aleksandr1234 : 19 октября 2014
50 руб.
Контрольная работа по дисциплине: «Математический анализ». Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=arctg(xy^2); A(2;3), a(4;-3) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^6=a^2(x^4-y^4) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, 4z=y^2, 2x-y=0, x+y=9 4. Даны векторное поле F=Xi+Yj+Zk и
User xtrail : 14 января 2014
400 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User Fatony : 29 сентября 2012
45 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
СибГУТИ математический анализ контрольная работа №1 вариант 6 1курс 1семестр Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями: Рецензия:Уважаемый ХХХХХХХХХХХХХХ, существенных
User barjel : 29 ноября 2011
45 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Описание: Вариант №6 1. Найти область сходимости степенного ряда (см. скрин) 2. Разложить функцию в ряд Фурье на данном отрезке (период Т) (см. скрин) 3. Начертить область на комплексной плоскости по данным условиям (см. скрин) 4. Вычислить интеграл по дуге L от точки Z1 до точки Z2 (см. скрин) 5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
User Иннокентий : 30 сентября 2019
400 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Теплотехника РГАУ-МСХА 2018 Задача 4 Вариант 32
По трубе внутренним диаметром d, мм и длиной L, м протекает вода со скоростью ω, м/с (рис. 2.3). Средняя температура воды – t, °С , а внутренней стенки трубы – tс, °С. Определите коэффициент теплоотдачи от воды к стенке трубы и передаваемый тепловой поток. Ответить на вопросы: 1. Дайте определение конвективному теплообмену, вынужденной конвекции. 2. Что изучает теория подобия, каково ее назначение? 3. Какие наблюдаются режимы течения жидкости (газа) в трубах? При каких условиях они воз
User Z24 : 26 января 2026
200 руб.
Теплотехника РГАУ-МСХА 2018 Задача 4 Вариант 32
Контрольная работа. По дисциплине: «Системное программное обеспечение».Вариант № 2
Задание. 2. Написать и отладить программу на языке ассемблера. В программе описать процедуру, которая вычисляет число элементов массива, которые заключены в пределах от А до В, где А, В – заданные целые числа. Параметры передавать следующим образом: в ВХ – смещение массива; в СХ – число элементов в массиве; в АХ – результат вычислений (число элементов). В основной программе вызвать описанную процедуру для двух разных массивов.
User Колька : 31 октября 2017
100 руб.
Прямое налогообложение в бюджетной системе Российской Федерации
Содержание Введение Глава 1. Прямое налогообложение в бюджетной системе Российской Федерации 1.1 Доходы бюджета Российской Федерации 1.2 Понятие прямого налогообложения 1.3 Налог на доходы физических лиц 1.4 Налог на прибыль предприятий 1.5 Земельный налог Глава 2. Анализ динамики прямых налогов в бюджете Российской Федерации 2.1 Налоговые поступления в 2006-2007 гг. 2.2 Налоговые поступления в 2007-2008 гг. 2.3 Налоговые поступления в январе - августе 2008-2009 гг. Глава 3. Проблемы
User Elfa254 : 27 октября 2013
10 руб.
Экзаменационная работа по дисциплине: Программное обеспечение схемотехнических устройств. Билет 9
Экзаменационные билеты по курсу «Программное обеспечение инфокоммуникационных технологий» Билет 9. 1. Назначение программ моделирования. 2. Назначение опции EDITORS? 3. Как обеспечить на поле схемы индикацию номеров узлов? 4. Какие параметры могут быть рассчитаны при временном анализе? 5. Какую форму имеет сигнал пульсирующего источника?
350 руб.
promo
up Наверх