Контрольная работа по дисциплине: Математический анализ. Вариант 6

Цена:
60 руб.

Состав работы

material.view.file_icon
material.view.file_icon математический анализ 2 семестр контрольная работа.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

кр№1 2семестр вариант 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле и плоскость (P): , которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.

Дополнительная информация

2012,Агульник В.И. зачет
Контрольная работа по дисциплине Математический анализ. Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. 3. Исследовать методами дифференциального исчисления функцию
User wertystn : 28 января 2019
70 руб.
Контрольная работа по дисциплине Математический анализ. Вариант №6
Контрольная работа по дисциплине «Математический анализ» Вариант №6
1. Найти пределы 2. Найти производные данных функций 3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график. 4. Дана функция. Найти все её частные производные второго порядка. 5. Найти неопределенные интегралы
User Nadyuha : 15 декабря 2016
200 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Контрольная работа по дисциплине : Математический анализ Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User nastenakosenkovmailru : 8 марта 2015
43 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
User Aleksandr1234 : 19 октября 2014
50 руб.
Контрольная работа по дисциплине: «Математический анализ». Вариант №6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=arctg(xy^2); A(2;3), a(4;-3) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^6=a^2(x^4-y^4) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, 4z=y^2, 2x-y=0, x+y=9 4. Даны векторное поле F=Xi+Yj+Zk и
User xtrail : 14 января 2014
400 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
User Fatony : 29 сентября 2012
45 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
СибГУТИ математический анализ контрольная работа №1 вариант 6 1курс 1семестр Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями: Рецензия:Уважаемый ХХХХХХХХХХХХХХ, существенных
User barjel : 29 ноября 2011
45 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Описание: Вариант №6 1. Найти область сходимости степенного ряда (см. скрин) 2. Разложить функцию в ряд Фурье на данном отрезке (период Т) (см. скрин) 3. Начертить область на комплексной плоскости по данным условиям (см. скрин) 4. Вычислить интеграл по дуге L от точки Z1 до точки Z2 (см. скрин) 5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
User Иннокентий : 30 сентября 2019
400 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Физика II-я часть Вариант:4
Задания к контрольной работе Часть 1тема колебания и волны Задача No504 Материальная точка совершает простые гармонические колебания, так, что в начальный момент времени смещение Х_0=4 см, а скорость V_0=10 см/с. Определить амплитуду А и начальную фазу 〖φ 〗_0колебаний, если их период Т=2 c. Задача No514 Гармонические колебания в электрическом контуре начались (t= 0) при максимальном напряжении на конденсаторе U_m=15 B и токе, равном нулю на частоте f =0,5 МГц. Электроемкость конденсатора С=
User lotos15 : 17 апреля 2020
200 руб.
promo
РД 34.20.182-90 Методические указания по типовой защите от вибрации и субколебаний проводов и грозозащитных тросов воздушных линий электропередачи напряжением 35-750 кВ
РД 34.20.182-90 "Методические указания по типовой защите от вибрации и субколебаний проводов и грозозащитных тросов воздушных линий электропередачи напряжением 35-750 кВ" приводится как действующий с обозначением СО 153-34.20.182-90 в "Указателе действующих в электроэнергетике нормативных документов на 01.07.2003 (обязательных и рекомендуемых к использованию)" СПО ОРГРЭС, Москва, 2003 год. Настоящие Методические указания распространяются на все типовые случаи защиты от вибрации и субколебаний п
User Qiwir : 27 июня 2013
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант 10
1. Кратные интегралы Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины. 2. Дифференциальные уравнения Найти общее решение дифференциального уравнения. xy`-2y=2x^(4) 3. Степенные ряды Найти область сходимости степенного ряда. (x-1)^(n)/(2n+3) 4. Приближенные вычисления с помощью разложения функции в ряд. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая по
User xtrail : 25 июля 2024
500 руб.
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант 10 promo
Шпоргалки по ткм
1 Сталь. Классификация КОНСТРУКЦИОННЫЕ ЛЕГИРОВАННЫЕ СТАЛИ ОСНОВНЫЕ ПОЛОЖЕНИЯ Алюминиевые сплавы и их свойства. ....
User volfgang : 17 июня 2009
up Наверх