Контрольная работа по дисциплине: Математический анализ. Вариант 6
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
кр№1 2семестр вариант 6
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле и плоскость (P): , которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле и плоскость (P): , которая совместно с координатными плоскостями образует пирамиду V. Пусть s - основание пирамиды, принадлежащее плоскости (P); I - контур, ограничивающий s; n - нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру I непосредственно и применив теорему Стокса к контуру I и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
2012,Агульник В.И. зачет
Похожие материалы
Контрольная работа по дисциплине Математический анализ. Вариант №6
wertystn
: 28 января 2019
1. Найти пределы
2. Найти производные данных функций
3. 3. Исследовать методами дифференциального исчисления функцию
70 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант №6
Nadyuha
: 15 декабря 2016
1. Найти пределы
2. Найти производные данных функций
3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график.
4. Дана функция. Найти все её частные производные второго порядка.
5. Найти неопределенные интегралы
200 руб.
Контрольная работа по дисциплине : Математический анализ Вариант №6
nastenakosenkovmailru
: 8 марта 2015
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
43 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №6
Aleksandr1234
: 19 октября 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
50 руб.
Контрольная работа по дисциплине: «Математический анализ». Вариант №6
xtrail
: 14 января 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arctg(xy^2); A(2;3), a(4;-3)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
x^6=a^2(x^4-y^4)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, 4z=y^2, 2x-y=0, x+y=9
4. Даны векторное поле F=Xi+Yj+Zk и
400 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант: № 6
Fatony
: 29 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (р): Ax+By+Cz+D=0, которая совместно с координатными плоскостями о
45 руб.
Контрольная работа по дисциплине: математический анализ. Вариант 6
barjel
: 29 ноября 2011
СибГУТИ
математический анализ
контрольная работа №1 вариант 6
1курс 1семестр
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Рецензия:Уважаемый ХХХХХХХХХХХХХХ,
существенных
45 руб.
Контрольная работа по дисциплине. Математический анализ (3 часть) вариант 6
Иннокентий
: 30 сентября 2019
Описание:
Вариант №6
1. Найти область сходимости степенного ряда (см. скрин)
2. Разложить функцию в ряд Фурье на данном отрезке (период Т) (см. скрин)
3. Начертить область на комплексной плоскости по данным условиям (см. скрин)
4. Вычислить интеграл по дуге L от точки Z1 до точки Z2 (см. скрин)
5. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом
400 руб.
Другие работы
Физика II-я часть Вариант:4
lotos15
: 17 апреля 2020
Задания к контрольной работе
Часть 1тема колебания и волны
Задача No504 Материальная точка совершает простые гармонические колебания, так, что в начальный момент времени смещение Х_0=4 см, а скорость V_0=10 см/с. Определить амплитуду А и начальную фазу 〖φ 〗_0колебаний, если их период Т=2 c.
Задача No514 Гармонические колебания в электрическом контуре начались (t= 0) при максимальном напряжении на конденсаторе U_m=15 B и токе, равном нулю на частоте f =0,5 МГц. Электроемкость конденсатора С=
200 руб.
РД 34.20.182-90 Методические указания по типовой защите от вибрации и субколебаний проводов и грозозащитных тросов воздушных линий электропередачи напряжением 35-750 кВ
Qiwir
: 27 июня 2013
РД 34.20.182-90 "Методические указания по типовой защите от вибрации и субколебаний проводов и грозозащитных тросов воздушных линий электропередачи напряжением 35-750 кВ" приводится как действующий с обозначением СО 153-34.20.182-90 в "Указателе действующих в электроэнергетике нормативных документов на 01.07.2003 (обязательных и рекомендуемых к использованию)" СПО ОРГРЭС, Москва, 2003 год.
Настоящие Методические указания распространяются на все типовые случаи защиты от вибрации и субколебаний п
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант 10
xtrail
: 25 июля 2024
1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок).
Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
xy`-2y=2x^(4)
3. Степенные ряды
Найти область сходимости степенного ряда.
(x-1)^(n)/(2n+3)
4. Приближенные вычисления с помощью разложения функции в ряд.
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая по
500 руб.
Шпоргалки по ткм
volfgang
: 17 июня 2009
1 Сталь. Классификация
КОНСТРУКЦИОННЫЕ ЛЕГИРОВАННЫЕ СТАЛИ ОСНОВНЫЕ ПОЛОЖЕНИЯ
Алюминиевые сплавы и их свойства.
....