Сравнение архитектуры POWER с другими RISC архитектурами
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Архитектура POWER
1. Эволюция архитектуры POWER в направлении архитектуры PowerPC
2. PowerPC 601
3. Процессор PowerPC 603
Описание архитектуры и принципов работы микропроцессоров семейства PowerPC
1. Общие сведения
2. Архитектура и работа процессора.
2.1 Поток команд.
2.2 Очередь команд и устройство распределения.
2.3 Устройство обработки переходов.
2.4 Устройство завершения команд.
2.5 Устройства выполнения.
2.5.1 Устройства выполнения целочисленных команд (IU).
2.5.2 Устройство выполнения команд с плавающей точкой (FPU)
2.5.3 Устройство загрузки/записи (LSU).
2.5.4 Устройство системных регистров (SRU).
2.6 Устройство управления памятью (MMU)
2.7 Встроенные кэши команд и данных.
3. Системный интерфейс. Схема выводов процессора.
3.1 Шины адреса и данных функционируют раздельно. Используются два вида доступов к памяти и
пересылки данных.
3.2 Группы выводов процессора 750.
4. Регистры и программная модель PowerPC.
4.1 Регистры PowerPC.
4.2 Система команд PowerPC.
Архитектура POWER во многих отношениях представляет собой традиционную RISC-архитектуру. Она придерживается наиболее важных отличительных особенностей RISC: фиксированной длины команд, архитектуры регистр-регистр, простых способов адресации, простых (не требующих интерпретации) команд, большого регистрового файла и трехоперандного (неразрушительного) формата команд. Однако архитектура POWER имеет также несколько дополнительных свойств, которые отличают ее от других RISC-архитектур.
Во-первых, набор команд был основан на идее суперскалярной обработки. В базовой архитектуре команды распределяются по трем независимым исполнительным устройствам: устройству переходов, устройству с фиксированной точкой и устройству с плавающей точкой. Команды могут направляться в каждое из этих устройств одновременно, где они могут выполняться одновременно и заканчиваться не в порядке поступления. Для увеличения уровня параллелизма, который может быть достигнут на практике, архитектура набора команд определяет для каждого из устройств независимый набор регистров. Это минимизирует связи и синхронизацию, требуемые между устройствами, позволяя тем самым исполнительным устройствам настраиваться на динамическую смесь команд. Любая связь по данным, требующаяся между устройствами, должна анализироваться компилятором, который может ее эффективно спланировать
1. Эволюция архитектуры POWER в направлении архитектуры PowerPC
2. PowerPC 601
3. Процессор PowerPC 603
Описание архитектуры и принципов работы микропроцессоров семейства PowerPC
1. Общие сведения
2. Архитектура и работа процессора.
2.1 Поток команд.
2.2 Очередь команд и устройство распределения.
2.3 Устройство обработки переходов.
2.4 Устройство завершения команд.
2.5 Устройства выполнения.
2.5.1 Устройства выполнения целочисленных команд (IU).
2.5.2 Устройство выполнения команд с плавающей точкой (FPU)
2.5.3 Устройство загрузки/записи (LSU).
2.5.4 Устройство системных регистров (SRU).
2.6 Устройство управления памятью (MMU)
2.7 Встроенные кэши команд и данных.
3. Системный интерфейс. Схема выводов процессора.
3.1 Шины адреса и данных функционируют раздельно. Используются два вида доступов к памяти и
пересылки данных.
3.2 Группы выводов процессора 750.
4. Регистры и программная модель PowerPC.
4.1 Регистры PowerPC.
4.2 Система команд PowerPC.
Архитектура POWER во многих отношениях представляет собой традиционную RISC-архитектуру. Она придерживается наиболее важных отличительных особенностей RISC: фиксированной длины команд, архитектуры регистр-регистр, простых способов адресации, простых (не требующих интерпретации) команд, большого регистрового файла и трехоперандного (неразрушительного) формата команд. Однако архитектура POWER имеет также несколько дополнительных свойств, которые отличают ее от других RISC-архитектур.
Во-первых, набор команд был основан на идее суперскалярной обработки. В базовой архитектуре команды распределяются по трем независимым исполнительным устройствам: устройству переходов, устройству с фиксированной точкой и устройству с плавающей точкой. Команды могут направляться в каждое из этих устройств одновременно, где они могут выполняться одновременно и заканчиваться не в порядке поступления. Для увеличения уровня параллелизма, который может быть достигнут на практике, архитектура набора команд определяет для каждого из устройств независимый набор регистров. Это минимизирует связи и синхронизацию, требуемые между устройствами, позволяя тем самым исполнительным устройствам настраиваться на динамическую смесь команд. Любая связь по данным, требующаяся между устройствами, должна анализироваться компилятором, который может ее эффективно спланировать
Другие работы
Контрольные работы по гидростатике и гидродинамике ИжГТУ К.р. 1 Задача 4 Вариант 19
Z24
: 11 декабря 2025
Определить давление р1 жидкости, которую необходимо подвести к гидроцилиндру, чтобы преодолеть усилие, направленное вдоль штока F. Диаметры: цилиндра D, штока d. Давление в бачке p0, высота Н0. Силу трения не учитывать. Плотность жидкости ρ=800 кг/м³.
180 руб.
Соединение болтовое. Вариант 3
lepris
: 25 августа 2022
Соединение болтовое. Вариант 3
Выполнить соединение заданных деталей с использованием стандартных крепежных деталей: болта, гайки, шайбы.
Оформить учебный сборочный чертеж "Соединение болтовое" и спецификацию.
Соединение болтами М10
Соединение болтовое. Вариант 3 сборочный чертеж
Соединение болтовое. Вариант 3 спецификация
Соединение болтовое. Вариант 3 3д модель
Чертежи и 3д модель выполнены в AutoCAD 2013 (все на скриншотах показано и присутствует в архиве) возможно открыть с 2013 по 2022
250 руб.
Розрахунок бульдозера ДЗ-110
Aronitue9
: 16 октября 2015
Висновки
1.Аналіз результатів досліджень різних типів робочих органів буль-дозерів показав, що існуючі конструкції не в повній мірі задовольняють вимогам, які висуваються до їх енергетичних та експлуатаційних показників.
В роботі наведено теоретичне узагальнення та вирішення науково-прикладної задачі, яка полягаєв підвищенні енергетичних показників процесу різання робочим органом бульдозера, шляхом розробки нової конструкції ножа відвала та обгрунтування його раціональних конструктивних параметр
450 руб.
Экономика недвижимости
mahaha
: 8 марта 2017
1. Площадь помещений, м2 1340
2. Ставка аренды за год, ден. ед./м2 210
3. % роста арендной платы, % 2,2
4. Степень недогрузки офисного центра, % 45 40 25 20 16
5. Операционные расходы в % от арендной платы 38 37 35 40 40
6. Резерв на замещение в % от арендной платы 3,2
7. Прочий доход, ден. ед 1500 1510 1600 1720 1720
8. Коэффициент капитализации, % 31
45 руб.